1
|
Wahab A, Batool F, Abdi G, Muhammad M, Ullah S, Zaman W. Role of plant growth-promoting rhizobacteria in sustainable agriculture: Addressing environmental and biological challenges. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154455. [PMID: 40037066 DOI: 10.1016/j.jplph.2025.154455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
This review underscores the importance of plant growth-promoting rhizobacteria (PGPR), fostering sustainability to address various environmental and biological issues. PGPR helps crops withstand salinity, nutrient deficiencies, and drought stress while tackling agricultural threats. Sustainable agriculture has emerged as a response to the social and economic problems farming practices face. Plants encounter obstacles from biotic stressors such as bacteria, viruses, nematodes, arachnids, and weeds that impede their growth. Furthermore, PGPR enhances plant growth through improved nutrient absorption and defense against pests. Bacillus subtilis utilizes indirect methods to combat diseases and protect plants from various diseases and pests. Additionally, PGPR acts as a bio-fertilizer that mitigates drought stress effects on crops in various regions worldwide. This review proposes strategies to boost productivity and improve bio-inoculant efficiency under real-world conditions. PGPR demonstrates its role in combating threats by influencing plant defense mechanisms, initiating systemic resistance responses, and regulating gene expression related to pathogen detection and defense signaling pathways. It maintains a balanced root microbiome by suppressing harmful microbial proliferation while promoting beneficial microbial interactions. Despite the challenges posed by technology and ethical considerations surrounding their modification, integrating PGPR into farming methods holds promise for sustainable agriculture. Given the increasing impact of climate change, PGPR plays a crucial role in improving crop resilience, enhancing soil quality, and reducing dependence on synthetic agricultural inputs.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS. Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Farwa Batool
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Villano F, Balestrini R, Nerva L, Chitarra W. Harnessing microbes as sun cream against high light stress. THE NEW PHYTOLOGIST 2025; 245:450-457. [PMID: 39462775 DOI: 10.1111/nph.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Plants rely on solar energy for growth through photosynthesis, yet excessive light intensity can induce physiological damage. Despite the considerable harm, inadequate attention has been directed toward understanding how plant-associated microorganisms mitigate this stress, and the impact of high light intensity on plant microbial communities remains underexplored. Through this Viewpoint, we aim to highlight the potential of microbial communities to enhance plant resilience and understand how light stress can shape plant microbiome. A full understanding of these dynamics is essential to design strategies that take advantage of microbial assistance to plants under light stress and to effectively manage the impact of changing light conditions on plant-microbe interactions.
Collapse
Affiliation(s)
- Filippo Villano
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources (IBBR), National Research Council (IBBR-CNR), Via G. Amendola 165/A, Bari (BA), 70126, Italy
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| |
Collapse
|
3
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
4
|
Zhang L, Zengin G, Ozfidan-Konakci C, Yildiztugay E, Arikan B, Ekim R, Koyukan B, Elbasan F, Lucini L. Exogenous curcumin mitigates As stress in spinach plants: A biochemical and metabolomics investigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108713. [PMID: 38739963 DOI: 10.1016/j.plaphy.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 μM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Rumeysa Ekim
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Buket Koyukan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| |
Collapse
|
5
|
Verma KK, Joshi A, Song XP, Liang Q, Xu L, Huang HR, Wu KC, Seth CS, Arora J, Li YR. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. FRONTIERS IN PLANT SCIENCE 2024; 15:1377793. [PMID: 38855463 PMCID: PMC11157439 DOI: 10.3389/fpls.2024.1377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Hai-rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Kai-Chao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | | | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
6
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
7
|
Yue H, Sun S, Wang R, Ma X, Shen S, Luo Y, Ma X, Wu T, Li S, Yang Z, Gong Y. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton. BMC PLANT BIOLOGY 2023; 23:656. [PMID: 38114925 PMCID: PMC10729352 DOI: 10.1186/s12870-023-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
AIMS In-depth studies on plant ion uptake and plant growth-promoting rhizobacteria (PGPR) at the molecular level will help to further reveal the effects of PGPR on plants and their interaction mechanisms under salt stress. METHODS Cotton was inoculated with a PGPR-Enterobacter cloacae Rs-35, and the ion uptake capacity, membrane transporter protein activity, and expression of key genes were determined under salt stress. Changes in the endogenous hormone content of cotton were also determined. Further, the genome-wide metabolic pathway annotation of E. cloacae Rs-35 and its differential enrichment pathway analysis of multi-omics under salinity environments were performed. RESULTS In a pot experiment of saline-alkali soil, E. cloacae Rs-35-treated cotton significantly increased its uptake of K+ and Ca2+ and decreased uptake of Na+, elevated the activity of the H+-ATPase, and increased the sensitivity of the Na+/H+ reverse transporter protein on the vesicle membrane. Meanwhile, inoculation with E. cloacae Rs-35 could promote cotton to maintain the indole-3-acetic acid (IAA) content under salt stress. Genome-wide annotation showed that E. cloacae Rs-35 was respectively annotated to 31, 38, and 130 related genes in osmotic stress, phytohormone and organic acid metabolism, and ion uptake metabolic pathway. Multi-omics differences analysis showed that E. cloacae Rs-35 were enriched to tryptophan metabolism, multiple amino acid biosynthesis, carbon and glucose synthesis, and oxidative phosphorylation metabolic pathways at the transcriptome, proteome, and metabolome. CONCLUSION E. cloacae Rs-35 can promote cotton balance cell ion concentration, stabilize intracellular IAA changes, stimulate induction of systemic tolerance, and promote the growth of cotton plants under salt stress.
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China.
| | - Shuwen Sun
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ruiqi Wang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shiwei Shen
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoli Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ting Wu
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shuang Li
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Zhengyang Yang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yuxi Gong
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| |
Collapse
|
8
|
Pervaiz S, Gul H, Rauf M, Mohamed HI, Ur Rehman K, Wasila H, Ahmad I, Shah ST, Basit A, Ahmad M, Akbar S, Fahad S. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. GESUNDE PFLANZEN 2023; 75:2591-2609. [DOI: 10.1007/s10343-023-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 10/26/2023]
|
9
|
Khan V, Umar S, Iqbal N. Synergistic action of Pseudomonas fluorescens with melatonin attenuates salt toxicity in mustard by regulating antioxidant system and flavonoid profile. PHYSIOLOGIA PLANTARUM 2023; 175:e14092. [PMID: 38148187 DOI: 10.1111/ppl.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
Salt stress is an alarming abiotic stress that reduces mustard growth and yield. To attenuate salt toxicity effects, plant growth-promoting rhizobacteria (PGPR) offers a sustainable approach. Among the various PGPR, Pseudomonas fluorescens (P. fluorescens NAIMCC-B-00340) was chosen for its salt tolerance (at 100 mM NaCl) and for exhibiting various growth-promoting activities. Notably, P. fluorescens can produce auxin, which plays a role in melatonin (MT) synthesis. Melatonin is a pleiotropic molecule that acts as an antioxidant to scavenge reactive oxygen species (ROS), resulting in stress reduction. Owing to the individual role of PGPR and MT in salt tolerance, and their casual nexus, their domino effect was investigated in Indian mustard under salt stress. The synergistic action of P. fluorescens and MT under salt stress conditions was found to enhance the activity of antioxidative enzymes and proline content as well as promote the production of secondary metabolites. This led to reduced oxidative stress following effective ROS scavenging, maintained photosynthesis, and improved growth. In mustard plants treated with MT and P. fluorescens under salt stress, eight flavonoids showed significant increase. Kaempferol and cyanidin showed the highest concentrations and are reported to act as antioxidants with protective functions under stress. Thus, we can anticipate that strategies involved in their enhancement could provide a better adaptive solution to salt toxicity in mustard plants. In conclusion, the combination of P. fluorescens and MT affected antioxidant metabolism and flavonoid profile that could be used to mitigate salt-induced stress and bolster plant resilience.
Collapse
Affiliation(s)
- Varisha Khan
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Shahid Umar
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| | - Noushina Iqbal
- Department of Botany, School of chemical and life sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Patani A, Prajapati D, Ali D, Kalasariya H, Yadav VK, Tank J, Bagatharia S, Joshi M, Patel A. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato ( Lycopersicon esculentum Mill.). FRONTIERS IN PLANT SCIENCE 2023; 14:1168155. [PMID: 37056512 PMCID: PMC10089305 DOI: 10.3389/fpls.2023.1168155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants are affected by salt stress in a variety of ways, including water deficiency, ion toxicity, nutrient imbalance, and oxidative stress, all of which can cause cellular damage or plant death. Halotolerant plant growth-promoting rhizobacteria (PGPR) could be a viable alternative for tomato plants growing in arid and semi-arid environments. The aim of this research was to isolate halotolerant plant growth promoting Bacillus sp. to promote tomato (Lycopersicon esculentum Mill.) growth and salt stress resistance. 107 PGPR strains were isolated from the rhizospheres of 'Kesudo' (Butea monosperma Lam.), 'Kawaria' (Cassia tora L.), and 'Arjun' (Terminalia arjuna Roxb.) plants to test their plant growth promoting abilities, including indole-3-acetic acid, phosphate solubilization, siderophore production, and ACC deaminase activity. Five bacterial strains (Bacillus pumilus (NCT4), Bacillus firmus (NCT1), Bacillus licheniformis (LCT4), Bacillus cereus (LAT3), and Bacillus safensis (LBM4)) were chosen for 16S rRNA on the basis of PGPR traits. Compared to PGPR untreated plants, tomato plants developed from PGPR-treated seeds had considerably increased germination percentage, seedling growth, plant height, dry weight, and leaf area. As comparison to PGPR non-inoculated plants, salt-stressed tomato plants treated with PGPR strains had higher levels of total soluble sugar, proline, and chlorophyll as well as higher levels of SOD, CAT, APX, and GR activity. PGPR-inoculated salt-stressed tomato plants had lower MDA, sodium, and chloride levels than non-inoculated plants. In addition, magnesium, calcium, potassium, phosphorus, and iron levels were higher in PGPR treated plants when subjected to salt stress. These results indicate that halotolerant PGPR strains can increase tomato productivity and tolerance to salt stress by removing salt stress's negative effects on plant growth.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigna Tank
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Snehal Bagatharia
- Gujarat State Biotechnology Mission (GSBTM), Udyog Bhavan, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|