1
|
Liu R, Feng Y, Li Q, Wu H, Guo S, Li J, Liu X, Zhang Y, Tang X, Cao S. Genome-Wide Analysis of CPP Transcription Factor Family in Endangered Plant Phoebe bournei and Its Response to Adversity. PLANTS (BASEL, SWITZERLAND) 2025; 14:803. [PMID: 40094804 PMCID: PMC11902078 DOI: 10.3390/plants14050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
The CPP gene family comprises transcription factor genes containing a conserved CRC domain, which is mainly involved in plant development and evolution. Although CPP genes have been widely studied in many plants, little is known about them in woody plants, especially in the endangered species Phoebe bournei (Hemsl.). In the genome of Phoebe bournei, we identified 11 PbCPP genes (PbCPP1-PbCPP11) distributed on four chromosomes, with large differences in the number of amino acids. They encode both acidic and alkaline proteins. A phylogenetic analysis showed that these PbCPP genes can be divided into three subfamilies, A, B, and C, which contain seven, two, and two genes, respectively. Through an interspecific collinearity analysis, we identified homologous PbCPP genes. A promoter cis-acting element analysis revealed that PbCPPs contain a variety of elements that respond to plant hormones, stress signals, and light and play a role in growth and development, and most PbCPP genes (except PbCPP3 and PbCPP8) contain MYB binding site elements that regulate drought-induced stress responses, indicating that they play an important role in plant drought resistance. An expression analysis showed that PbCPP3 and PbCPP4 expression was high in the roots and stems and lower in the leaves, whereas the expression of most of the other genes was low in the roots, stems, and leaves. In addition, six representative PbCPP genes were detected using qRT-PCR. The results show significant differences in the expression of PbCPP genes under abiotic stress conditions (drought, cold, and salt), indicating that they play an important role in stress responses. This study preliminarily verified the role of the PbCPP gene family in different abiotic stress responses, which is of great significance for understanding its mechanism in plant growth and development and stress adaptation.
Collapse
Affiliation(s)
- Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Qingyan Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Hua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Junnan Li
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| |
Collapse
|
2
|
Liu P, Tang J, Lei Y, Zhang L, Ye J, Wang C, Zhou L, Liu Y, Wang Z, Jiang J, Chen F, Song A. Construction of the KNOX-BELL interaction network and functional analysis of CmBLH2 under cold stress in Chrysanthemum morifolium. Int J Biol Macromol 2025; 293:139365. [PMID: 39743079 DOI: 10.1016/j.ijbiomac.2024.139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported. In this study, 60 members of the TALE transcription factor family in chrysanthemum (Chrysanthemum morifolium) were systematically identified. These genes are distributed across 27 chromosomes, with most originating from whole-genome duplication events. Through comprehensive analyses of evolution, gene structure, and cis-regulatory elements, the expression patterns of these genes were elucidated, highlighting their roles in various developmental stages and stress responses, thereby expanding our understanding of the TALE gene family's functions in plants. Additionally, a KNOX-BELL protein interaction network in chrysanthemum was constructed, revealing 31 interaction pairs, including seven previously unreported combinations. The study also finds that the overexpression of CmBLH2 enhanced the activity of antioxidant system, reducing cellular damage under cold stress, while RNAi lines exhibited lower reactive oxygen species scavenging capacity. This research lays the foundation for further investigation of the TALE gene family's roles in development and stress responses in chrysanthemum and other species.
Collapse
Affiliation(s)
- Peixue Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jing Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Yating Lei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Lingling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jingxuan Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Chun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
3
|
Lu H, Xu J, Li G, Zhong T, Chen D, Lv J. Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis. BMC PLANT BIOLOGY 2024; 24:573. [PMID: 38890621 PMCID: PMC11184746 DOI: 10.1186/s12870-024-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The GRAS gene family is a class of plant-specific transcription factors with important roles in many biological processes, such as signal transduction, disease resistance and stress tolerance, plant growth and development. So far, no information available describes the functions of the GRAS genes in Eucalyptus grandis. RESULTS A total of 82 GRAS genes were identified with amino acid lengths ranging from 267 to 817 aa, and most EgrGRAS genes had one exon. Members of the GRAS gene family of Eucalyptus grandis are divided into 9 subfamilies with different protein structures, while members of the same subfamily have similar gene structures and conserved motifs. Moreover, these EgrGRAS genes expanded primarily due to segmental duplication. In addition, cis-acting element analysis showed that this family of genes was involved involved in the signal transduction of various plant hormones, growth and development, and stress response. The qRT-PCR data indicated that 18 EgrGRAS genes significantly responded to hormonal and abiotic stresses. Among them, the expression of EgrGRAS13, EgrGRAS68 and EgrGRAS55 genes was significantly up-regulated during the treatment period, and it was hypothesised that members of the EgrGRAS family play an important role in stress tolerance. CONCLUSIONS In this study, the phylogenetic relationship, conserved domains, cis-elements and expression patterns of GRAS gene family of Eucalyptus grandis were analyzed, which filled the gap in the identification of GRAS gene family of Eucalyptus grandis and laid the foundation for analyzing the function of EgrGRAS gene in hormone and stress response.
Collapse
Affiliation(s)
- Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jianmin Xu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Guangyou Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Tailin Zhong
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Danwei Chen
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiabin Lv
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Chen L, Qin Y, Fan S. Genome-Wide Identification and Characterization of the GRAS Gene Family in Lettuce Revealed That Silencing LsGRAS13 Delayed Bolting. PLANTS (BASEL, SWITZERLAND) 2024; 13:1360. [PMID: 38794431 PMCID: PMC11124801 DOI: 10.3390/plants13101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Lettuce is susceptible to high-temperature stress during cultivation, leading to bolting and affecting yield. Plant-specific transcription factors, known as GRAS proteins, play a crucial role in regulating plant growth, development, and abiotic stress responses. In this study, the entire lettuce LsGRAS gene family was identified. The results show that 59 LsGRAS genes are unevenly distributed across the nine chromosomes. Additionally, all LsGRAS proteins showed 100% nuclear localization based on the predicted subcellular localization and were phylogenetically classified into nine conserved subfamilies. To investigate the expression profiles of these genes in lettuce, we analyzed the transcription levels of all 59 LsGRAS genes in the publicly available RNA-seq data under the high-temperature treatment conducted in the presence of exogenous melatonin. The findings indicate that the transcript levels of the LsGRAS13 gene were higher on days 6, 9, 15, 18, and 27 under the high-temperature (35/30 °C) treatment with melatonin than on the same treatment days without melatonin. The functional studies demonstrate that silencing LsGRAS13 accelerated bolting in lettuce. Furthermore, the paraffin sectioning results showed that flower bud differentiation in LsGRAS13-silenced plants occurred significantly faster than in control plants. In this study, the LsGRAS genes were annotated and analyzed, and the expression pattern of the LsGRAS gene following melatonin treatment under high-temperature conditions was explored. This exploration provides valuable information and identifies candidate genes associated with the response mechanism of lettuce plants high-temperature stress.
Collapse
Affiliation(s)
- Li Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
| | - Shuangxi Fan
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Y.Q.)
- Plant Science and Technology College, Beijing Vocational College of Agriculture, Beijing 102442, China
| |
Collapse
|
5
|
Li J, Zhang Y, Tang X, Liao W, Li Z, Zheng Q, Wang Y, Chen S, Zheng P, Cao S. Genome Identification and Expression Profiling of the PIN-Formed Gene Family in Phoebe bournei under Abiotic Stresses. Int J Mol Sci 2024; 25:1452. [PMID: 38338732 PMCID: PMC10855349 DOI: 10.3390/ijms25031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.
Collapse
Affiliation(s)
- Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuoqun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|