1
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
2
|
Li K, Yu L, Gao L, Zhu L, Feng X, Deng S. Unveiling molecular mechanisms of pigment synthesis in gardenia ( Gardenia jasminoides) fruits through integrative transcriptomics and metabolomics analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100209. [PMID: 38973987 PMCID: PMC11225661 DOI: 10.1016/j.fochms.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
This study conducted a combined transcriptomics and metabolomics analysis in premature and mature developmental stages of Gardenia jasminoides Ellis fruits to identify the molecular mechanisms of pigment synthesis. The transcriptomics data produced high-quality clean data amounting to 46.98 gigabytes, exhibiting a mapping ratio of 86.36% to 91.43%. Transcriptomics analysis successfully identified about 3,914 differentially expressed genes which are associated with pivotal biological processes, including photosynthesis, chlorophyll, biosynthetic processes, and protein-chromophore linkage pathways. Functional diversity was clarified by the Clusters of Orthologous Groups (COG) classification, which focused mainly on pigment synthesis functions. Pathways analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) revealed critical pathways affecting pigment development. Metabolomics studies were carried out utilizing Ultra Performance Liquid Chromatography and mass spectrometry (UPLC-MS). About 480 metabolites were detected via metabolomics investigation, the majority of that were significantly involved in pigment synthesis. Cluster and pathway analyses revealed the importance of pathways such as plant secondary metabolite biosynthesis, biosynthesis of phenylpropanoids and plant hormone signal transduction in pigment synthesis. Current research advances our comprehension of the underlying mechanisms at the molecular level governing pigment synthesis in gardenia fruits, furnishing valuable insights for subsequent investigations.
Collapse
Affiliation(s)
- Kangqin Li
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Lixin Yu
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Liqin Gao
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - lingzhi Zhu
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| | - Xiaotao Feng
- College of Forestry, Jiangxi Agricultural University, Jiangxi, Nanchang 330045, China
| | - Shaoyong Deng
- Jiangxi Academy of Forestry, Nanchang 330032, China
- Engineering Research Center for Gardenia of National Forestry and Grassland Administration, Nanchang 330032, China
| |
Collapse
|
3
|
Yang J, Luo K, Guo Z, Wang R, Qian Q, Ma S, Li M, Gao Y. Evaluation of Crocetin as a Protective Agent in High Altitude Hypoxia-Induced Organ Damage. Pharmaceuticals (Basel) 2024; 17:985. [PMID: 39204090 PMCID: PMC11357033 DOI: 10.3390/ph17080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia by the alkaline hydrolysis method, and its reducing ability and free radical scavenging ability were tested. The in vitro anti-hypoxia vitality was studied on PC12 cells. The anti-hypoxic survival time of mice was determined in several models. The acute hypoxic injury rat model was established by simulating the hypoxic environment of 8000 m-high altitude for 24 h, and the anti-hypoxia effect of crocetin was evaluated by intraperitoneal injection with the doses of 10, 20, and 40 mg/kg. The water contents of the brain and lung were determined, and the pathological sections in the brain, lung, heart, liver, and kidney were observed by HE staining. The levels of oxidative stress (SOD, CAT, H2O2, GSH, GSH-Px, MDA) and inflammatory factors (IL-1β, IL-6, TNF-α, VEGF) in rat brain, lung, heart, liver, and kidney tissues were detected by ELISA. The results indicated that crocetin exhibited strong reducing ability and free radical scavenging ability and could improve the activity of PC12 cells under hypoxia. After intraperitoneal injection with crocetin, the survival time of mice was prolonged, and the pathological damage, oxidative stress, and inflammation in rats' tissue were ameliorated. The protective activity of crocetin on vital organs in high-altitude hypoxia rats may be related to reducing oxidative stress and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Jun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Kai Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ziliang Guo
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Renjie Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Qingyuan Qian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Shuhe Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Maoxing Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| |
Collapse
|
4
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Qian H, Hu Y, Wang Z, Ren A, Zhang H, Chu S, Peng H. Comprehensive quality evaluation of different types of Gardeniae Fructus ( Zhizi) and Shuizhizi based on LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2024; 15:1346591. [PMID: 38476680 PMCID: PMC10927785 DOI: 10.3389/fpls.2024.1346591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Gardeniae Fructus (Zhizi) serves as both a medicinal and edible substance and finds widespread use in various industries. There are often two kinds of medicinal materials in the market: Zhizi and Shuizhizi. Typically, Zhizi with small, round fruit is used for medicinal purposes, while Shuizhizi, characterized by large, elongated fruit, is employed for dyeing. Market surveys have revealed a diverse range of Zhizi types, and modern research indicates that Shuizhizi contains rich chemical components and pharmacological activities. In this study, we collected 25 batches of Zhizi and Shuizhizi samples, categorizing them based on appearance into obovate and round fruits, with seven length grades (A-G). Using the ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method, we simultaneously quantified 13 main chemical components in fruits of Gardenia species. In addition, we compared the weight percentage of the pericarp, flesh, and seeds parts of samples with different traits, and quantified 13 chemical components in different parts. Results indicated that, aside from a few instances of overlapping fruit size ranges, Shuizhizi generally exhibits larger and longer dimensions than Zhizi. The weight proportion of the Shuizhizi pericarp is often higher than that of the Zhizi pericarp. Quantitative results highlighted significant differences in the chemical component content between Zhizi and Shuizhizi, with Shuizhizi generally containing higher levels of iridoids. The PCA and OPLS-DA analysis distinctly divided Shuizhizi and Zhizi, among which three iridoids, two organic acids, and one flavonoid made significant contributions to their classification. Cluster heatmap analysis also demonstrated complete separation between Zhizi and Shuizhizi, with clear distinctions among Zhizi samples from different origins. The distribution of the 13 chemical components in different Zhizi and Shuizhizi parts remained consistent, with iridoids and pigments concentrated in the seeds and flesh, and two organic acids and one flavonoid enriched in the pericarp. In summary, this study contributes valuable insights for classifying Zhizi and offers guidance on the rational use of Shuizhizi and the different parts of Zhizi.
Collapse
Affiliation(s)
- Huimin Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhiwei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Aoyu Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences (2019RU57), Beijing, China
| | - Haiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences (2019RU57), Beijing, China
| |
Collapse
|
6
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|