1
|
Nagdalian A, Blinov A, Gvozdenko A, Golik A, Rekhman Z, Rzhepakovsky I, Kolesnikov R, Avanesyan S, Blinova A, Pirogov M, Leontev P, Askerova A, Tsykin E, Shariati MA. Effect of MnO 2 Nanoparticles Stabilized with Cocamidopropyl Betaine on Germination and Development of Pea ( Pisum sativum L.) Seedlings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:959. [PMID: 38869584 PMCID: PMC11174102 DOI: 10.3390/nano14110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1-10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 μg/L at 10 mg/L and 892.6 μg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research.
Collapse
Affiliation(s)
- Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Andrey Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alexey Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alexey Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Zafar Rekhman
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Igor Rzhepakovsky
- Interdepartmental Scientific and Educational Laboratory of Experimental Immunomorphology, Immunopathology and Immunobiotechnology, Faculty of Medicine and Biology, North Caucasus Federal University, 355017 Stavropol, Russia; (I.R.); (S.A.)
| | - Roman Kolesnikov
- Scientific Department, Saints Petersburg State Agrarian University, 190005 Pushkin, Russia;
| | - Svetlana Avanesyan
- Interdepartmental Scientific and Educational Laboratory of Experimental Immunomorphology, Immunopathology and Immunobiotechnology, Faculty of Medicine and Biology, North Caucasus Federal University, 355017 Stavropol, Russia; (I.R.); (S.A.)
| | - Anastasiya Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Maxim Pirogov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Pavel Leontev
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.G.); (A.G.); (Z.R.); (A.B.); (M.P.); (P.L.)
| | - Alina Askerova
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Evgeniy Tsykin
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 355017 Stavropol, Russia; (A.A.)
| | - Mohammad Ali Shariati
- Semey Branch of Kazakh Research Institute of Processing and Food Industry, Almaty 050060, Kazakhstan
| |
Collapse
|
2
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|