1
|
Chen S, Wu D, Deng X, Zhan Q, Pan Z, Chen Z, Liu Z, Chen C, Chen Y, Li L, Liu S, Tan S. Ebola Virus Glycoprotein Impairs Human Retinal Pigment Epithelial Barrier Function via the PI3K/Akt-Nrf2 Pathway. ACS Infect Dis 2025. [PMID: 40237321 DOI: 10.1021/acsinfecdis.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Ebola virus (EBOV) causes deadly Ebola virus disease (EVD), and EVD survivors are at high risk of developing blinding ocular complications, which associate with the breakdown of human retinal pigment epithelial (RPE) barrier. Here, we demonstrated EBOV glycoprotein (GP) could directly impair RPE barrier function. EBOV GP significantly decreased expression of tight junction (TJ) proteins in RPE monolayers, resulting in an increase of monolayer permeability. EBOV GP activated PI3K/Akt pathway and induced oxidative stress in RPE cells as evidenced by an increase in the production of reactive oxygen species (ROS), decreased expression of an antioxidant factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and its downstream proteins heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1). We found activating Nrf2 could counteract EBOV GP-induced RPE barrier injury. Furthermore, GP2 subunit is the key region in the GP that impairs RPE barrier function. Destruction of RPE barrier function by EBOV GP leads to translocation of bacteria and HIV-1. We confirmed EBOV GP-mediated impairment of RPE barrier function in mice. As an Nrf2 activator, resveratrol displays protective effects on the RPE barrier function. Collectively, our study demonstrates EBOV GP impairs the RPE barrier function through PI3K/Akt-Nrf2 pathway and resveratrol is a promising therapeutic agent for EVD-associated retinal complications.
Collapse
Affiliation(s)
- Shaoying Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Dingzhou Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Xiujiao Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Qingping Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Zhizhi Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Zhuo Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Zijia Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Chuqing Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Yuliu Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Lin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, 1023 South Shatai Road, Guangzhou 510515, China
| | - Suiyi Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, 1023 South Shatai Road, Guangzhou 510515, China
| |
Collapse
|
2
|
Zhang X, Zhong Y, Rajabi S. Polyphenols and post-exercise muscle damage: a comprehensive review of literature. Eur J Med Res 2025; 30:260. [PMID: 40205487 PMCID: PMC11983803 DOI: 10.1186/s40001-025-02506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Recent research highlights the significant role of polyphenols in alleviating post-exercise muscle damage, thus positioning them as a valuable nutritional strategy for athletes and fitness enthusiasts. Polyphenols, naturally occurring bioactive compounds abundant in fruits, vegetables, tea, wine, and other plant-based foods, are recognized for their potent antioxidant and anti-inflammatory properties. This dual mechanism is critical for combating oxidative stress and inflammation-two factors that intensify during vigorous physical activity and contribute to muscle soreness and damage. Among various polyphenols, compounds like quercetin have particularly emerged as effective agents for promoting muscle recovery and enhancing exercise performance. These protective effects are facilitated through several mechanisms, including the modulation of inflammatory pathways, acceleration of muscle repair processes, and enhancement of mitochondrial function, all of which bolster overall muscle health. As ongoing studies yield deeper insights, the potential of polyphenols to enhance athletic performance and overall health will become increasingly substantiated, leading towards their strategic incorporation into exercise nutrition protocols. Therefore, we reviewed relevant studies in order to show how efficient polyphenols can be in reducing muscle fatigue and damage and what are the exact mechanisms.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Yinchuan University of Energy, Yinchuan, 750105, Ningxia, China
| | - Yuanfu Zhong
- School of Sports and Health Sciences, Xiangsihu College of Guangxi Minzu University, Nanning, 530000, Guangxi, China.
| | - Sogand Rajabi
- Department of Cellular and Molecular Biology, Islamic Azad University, Sirjan Branch, Sirjan, Iran.
| |
Collapse
|
3
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
4
|
Zhou L, Cai X, Wang Y, Yang J, Wang Y, Deng J, Ye D, Zhang L, Liu Y, Ma S. Chemistry and biology of natural stilbenes: an update. Nat Prod Rep 2025; 42:359-405. [PMID: 39711130 DOI: 10.1039/d4np00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Covering: 2009 up to the end of 2023Stilbenes, an emblematic group of polyphenols, have attracted the attention of numerous researchers owing to their intriguing polycyclic architectures and diverse bioactivities. In this updated review, natural stilbenes were analysed, especially oligomeric stilbenes, which are an emblematic group of polyphenols that harbor intriguing polycyclic architectures and diverse bioactivities compared with those previously anticipated. Oligomeric stilbenes with unique skeletons comprise a large majority of natural stilbenes owing to their structural changes and different substitutions on the phenyl rings. These compounds can be promising sources of lead compounds for studying new drugs and medicines. In addition, the exploration of unusual structures of oligomeric stilbenes such as polyflavanostilbenes A and B, analysing their absolute stereochemistry, and improving their yield using synthetic biology methods have recently gained interest. This review provides a systematic overview of 409 new stilbenes, which were isolated and identified over time from January 2009 to December 2023, focusing on the classification and biomimetic syntheses of oligomeric stilbenes, in addition to presenting meaningful insights into their structural diversity and biological activities, which will inspire further investigations of biological activities, structure-activity relationships, and screening of drug candidates.
Collapse
Affiliation(s)
- Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Cai
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yadan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialing Deng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
5
|
Meng T, Wen Z, Cheng X, Li C, Zhang P, Xiao D, Xu Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals (Basel) 2025; 15:417. [PMID: 39943187 PMCID: PMC11816141 DOI: 10.3390/ani15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Stilbenoids are a class of naturally occurring phenolic compounds found in various plant species, characterized by a stilbene backbone with diverse substituents that confer a range of biological activities. These compounds exhibit antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for improving intestinal health. The intestinal tract plays a critical role in nutrient digestion, absorption, and immune defense, and maintaining its integrity is vital for animal growth. Stilbenoids contribute to gut health by enhancing intestinal morphology, supporting mucosal immune responses, regulating gut microbiota composition, modulating metabolic pathways, and maintaining mitochondrial health. This review provides a comprehensive analysis of key stilbenoids, including resveratrol, pterostilbene, piceatannol, and oxyresveratrol, focusing on their biological effects and regulatory mechanisms. By highlighting their roles in mitigating intestinal inflammation and promoting gut function, this review provides a basis for the practical application of stilbenoids in animal health and husbandry.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Ziwei Wen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| |
Collapse
|
6
|
Ding B, Li J, Yan JL, Jiang CY, Qian LB, Pan J. Resveratrol contributes to NK cell-mediated breast cancer cytotoxicity by upregulating ULBP2 through miR-17-5p downmodulation and activation of MINK1/JNK/c-Jun signaling. Front Immunol 2025; 16:1515605. [PMID: 39963142 PMCID: PMC11830804 DOI: 10.3389/fimmu.2025.1515605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUNDS Natural killer (NK) cell mediated cytotoxicity is a crucial form of anti-cancer immune response. Natural killer group 2 member D (NKG2D) is a prominent activating receptor of NK cell. UL16-binding protein 2 (ULBP2), always expressed or elevated on cancer cells, functions as a key NKG2D ligand. ULBP2-NKG2D ligation initiates NK cell activation and subsequent targeted elimination of cancer cells. Enhanced expression of ULBP2 on cancer cells leads to more efficient elimination of these cells by NK cells. Resveratrol (RES) is known for its multiple health benefits, while current understanding of its role in regulating cancer immunogenicity remains limited. This study aims to investigate how RES affects the expression of ULBP2 and the sensitivity of breast cancer (BC) cells to NK cell cytotoxicity, along with the underlying mechanisms. METHODS The effects of RES on ULBP2 expression were detected with qRT-PCR, western blot, flow cytometry analysis and immunohistochemistry. The effects of RES on sensitivity of BC cells to NK cell cytotoxicity were evaluated in vitro and in vivo. The target gene of miR-17-5p were predicted with different algorithms from five databases and further confirmed with dual-luciferase reporter assay. Overexpression and knockdown experiments of miR-17-5p and MINK1 were conducted to investigate their roles in regulating ULBP2 expression and subsequent JNK/c-Jun activation. The JNK inhibitor sp600125 was utilized to elucidate the specific role of JNK in modulating ULBP2 expression. RESULTS RES increased ULBP2 expression on BC cells, thereby augmenting their vulnerability to NK cell-mediated cytotoxicity both in vitro and in vivo. RES administration led to a reduction in cellular miR-17-5p level. MiR-17-5p negatively regulated ULBP2 expression. Specifically, miR-17-5p directly targeted MINK1, leading to its suppression. MINK1 played a role in facilitating the activation of JNK and its downstream effector, c-Jun. Furthermore, treatment with sp600125, a JNK inhibitor, resulted in the suppression of ULBP2 expression. CONCLUSIONS: RES potentiates ULBP2-mediated immune eradication of BC cells by NK cells through the downregulation of miR-17-5p and concurrent activation of the MINK1/JNK/c-Jun cascade. This finding identifies RES as a potentially effective therapeutic agent for inhibiting BC progression and optimizing NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Bisha Ding
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Pan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Saitoh Y, Kanawa S, Nohara T, Yamaguchi R, Wakita A, Ikeda C, Hamada H. Resveratrol polysaccharide is less cytotoxicity and inhibits UVA-, UVB-, and tertiary-butyl hydroperoxide-induced injury in human keratinocytes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03749-6. [PMID: 39751819 DOI: 10.1007/s00210-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Natural stilbene compounds, such as resveratrol and pterostilbene, have been focused on owing to their diverse biological activities associated with antioxidant, anti-inflammatory, and anti-aging properties. However, their low water solubility limits their advanced applications. In this study, we investigated the protective effects of selected stilbene compounds (resveratrol, oxyresveratrol, gnetol, piceatannol, and pterostilbene) and their water-soluble derivatives (piceid, resveratrol polysaccharide, pterostilbene trisaccharide, and pterostilbene polysaccharide) against UVA-, UVB irradiation, tertiary-butyl hydroperoxide (t-BuOOH)- and hydrogen peroxide (H2O2)-induced injury in human epidermal cells. Our results revealed the significantly greater cytoprotective effects of resveratrol polysaccharide against UVA-, UVB-, and t-BuOOH-induced injury compared to that recorded for other stilbenes. This effect was associated with the suppression of stress-induced intracellular reactive oxygen species (ROS) generation and lipid peroxidation; resveratrol polysaccharides were more effective than other antioxidants. However, the tested compounds could not inhibit H2O2-induced cell injury. Our results indicate that most stilbene derivatives can inhibit UV- and lipid hydroperoxide-induced cellular injury; moreover, resveratrol polysaccharide exhibits excellent protective effects through the suppression of ROS generation and lipid peroxidation. Overall, the poly-glycosylation of resveratrol enhances its effectiveness against UVA or UVB irradiation- and lipid peroxidation-induced injuries in human keratinocytes. Therefore, the resveratrol polysaccharide is proposed to be a novel effective cytoprotective candidate to be used as a cosmetic ingredient for protecting skin from stress-related damage.
Collapse
Affiliation(s)
- Yasukazu Saitoh
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan.
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Nanatsuka 5562, Shobara, Hiroshima, 727-0023, Japan.
| | - Shizuka Kanawa
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Tsugumi Nohara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Ryoko Yamaguchi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Arisa Wakita
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Chinatsu Ikeda
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Nanatsuka 5562, Shobara, Hiroshima, 727-0023, Japan
| | - Hiroki Hamada
- Meisterbio Co., Ltd., Okayama, Japan
- Okayama University of Science, Okayama, Japan
| |
Collapse
|
8
|
Bruno F, Naselli F, Brancato D, Volpes S, Cardinale PS, Saccone S, Federico C, Caradonna F. Effects of Pterostilbene on the Cell Division Cycle of a Neuroblastoma Cell Line. Nutrients 2024; 16:4152. [PMID: 39683545 DOI: 10.3390/nu16234152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background. The "Cell Cycle Hypothesis" suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. Methods. In this study, we investigated the effects of pterostilbene on neuronal-like cells derived from the human neuroblastoma SK-N-BE cell line, where cell cycle reactivation was induced by forskolin treatment. We analyzed molecular endpoints associated with differentiated versus replicative cell states, specifically the following: (a) the expression of cyclin CCND1, (b) the Ki67 cell proliferation marker, (c) the AT8 nuclear tau epitope, and (d) genome-wide DNA methylation changes. Results. Our findings indicate that pterostilbene exerts distinct effects on the cell division cycle depending on the cellular state, with neuroprotective benefits observed in differentiated neuronal-like cells, but not in cells undergoing induced division. Additionally, pterostilbene alters DNA methylation patterns. Conclusion. These results suggest that pterostilbene may offer neuroprotective advantages for differentiated neuronal-like cells. However, further studies are required to confirm these effects in vivo by examining specific biomarkers in human populations consuming pterostilbene-containing foods.
Collapse
Affiliation(s)
- Francesca Bruno
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Flores Naselli
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Desiree Brancato
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Sara Volpes
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Paola Sofia Cardinale
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
| | - Salvatore Saccone
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceutics and Health Products, 95125 Catania, Italy
| | - Concetta Federico
- Department Biological, Geological, and Environmental Sciences, University of Catania, 95124 Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceutics and Health Products, 95125 Catania, Italy
| | - Fabio Caradonna
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
9
|
Zagoskina N. Special Issue "Advances in the Physiology of Primary and Secondary Plant Metabolism Under Abiotic and Biotic Stress". Int J Mol Sci 2024; 25:12339. [PMID: 39596403 PMCID: PMC11595043 DOI: 10.3390/ijms252212339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
One of the most relevant areas of biology is the study of plant adaptation processes to the action of various stress factors of abiotic and biotic nature, which is reflected in the works of molecular biologists, geneticists, microbiologists, plant physiologists, and biochemists, as well as biotechnologists [...].
Collapse
Affiliation(s)
- Natalia Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
10
|
Visvanathan R, Le DT, Dhital S, Rali T, Davis RA, Williamson G. Inhibition of Human Salivary and Pancreatic α-Amylase by Resveratrol Oligomers. J Med Chem 2024; 67:18753-18763. [PMID: 39501642 PMCID: PMC11571111 DOI: 10.1021/acs.jmedchem.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024]
Abstract
A key strategy to mitigate postprandial hyperglycemia involves inhibiting α-amylases, which commence the starch digestion process in the gut. This study examined the inhibitory effects of resveratrol and stilbenoid tetramers, vaticanol B, (-)-hopeaphenol, and vatalbinoside A on human salivary and pancreatic α-amylases experimentally and through molecular docking studies. Vaticanol B demonstrated the most potent inhibition with IC50 values of 5.3 ± 0.3 μM for salivary and 6.1 ± 0.5 μM for pancreatic α-amylase (compared to acarbose with IC50 values of 1.2 ± 0.1 μM and 0.5 ± 0.0 μM, respectively). Kinetic analysis suggested a competitive inhibition mode for vaticanol B. Resveratrol and vatalbinoside A were poor inhibitors of human α-amylases, while (-)-hopeaphenol exhibited moderate inhibition. Molecular docking supported the inhibition data, and several aspects of the structural configurations explained the stronger inhibition exerted by vaticanol B. Overall, vaticanol B shows promise as a natural alternative to acarbose for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Molecular
Nutrition Group, Department of Nutrition, Dietetics and Food, Monash University, Victorian Heart Institute, Victoria
Heart Hospital, 631 Blackburn
Road, Clayton, VIC 3168, Australia
| | - Dang Truong Le
- Molecular
Nutrition Group, Department of Nutrition, Dietetics and Food, Monash University, Victorian Heart Institute, Victoria
Heart Hospital, 631 Blackburn
Road, Clayton, VIC 3168, Australia
- Bioresource
Processing Research Institute of Australia (BioPRIA), Department of
Chemical and Biological Engineering, Monash
University, Clayton, VIC 3800, Australia
| | - Sushil Dhital
- Bioresource
Processing Research Institute of Australia (BioPRIA), Department of
Chemical and Biological Engineering, Monash
University, Clayton, VIC 3800, Australia
| | - Topul Rali
- School
of Natural and Physical Sciences, The University
of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Rohan A. Davis
- Institute
for Biomedicine and Glycomics, Griffith
University, Brisbane, QLD 4111, Australia
| | - Gary Williamson
- Molecular
Nutrition Group, Department of Nutrition, Dietetics and Food, Monash University, Victorian Heart Institute, Victoria
Heart Hospital, 631 Blackburn
Road, Clayton, VIC 3168, Australia
| |
Collapse
|
11
|
Gaudin K, Valls-Fonayet J, Cordazzo R, Serafin W, Lafon E, Gaubert A, Richard T, Cluzet S. Separation of polyphenols by HILIC methods with diode array detection, charged aerosol detection and mass spectrometry: Application to grapevine extracts rich in stilbenoids. J Chromatogr A 2024; 1736:465422. [PMID: 39383622 DOI: 10.1016/j.chroma.2024.465422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The characterization of plant extracts is usually accomplished by reverse-phase liquid chromatography, but the development of new complementary approaches, such as HILIC, offers an orthogonal method. In this study, five HILIC stationary phases were evaluated to assess their ability to retain polyphenols. They were selected to cover the main different HILIC mechanisms: bare silica; silica with ethylene bridge; neutral amide; amino; zwitterionic. A total of 31 polyphenol standards were used for the screening, including 9 stilbenes, 8 flavonoids, 6 anthocyanins, and 8 phenolic acids. Three different detections were tested: diode array detector, charged aerosol detector and mass spectrometry. Results indicated that silica supports were not suitable for retaining polyphenols, with no or low retention observed except for anthocyanins. The effectiveness of stationary phases in retention of phenolics following the order related to increased retention: zwitterionic, amide, and amino. The choice of mobile phase also influenced retention. Mobile phases containing TFA as pH modifier limited retention, while formic acid was found to be more effective for polyphenol retention. Ammonium buffers also improved retention but often compromised peak shape. pH changes mainly impacted ionizable compounds, such as phenolic acids, by increasing their retention when they were ionized. DAD was wellsuited for detecting polyphenols that possess aromatic rings, though peak wavelengths depend on the structures of the polyphenols. CAD, while less sensitive than DAD and MS, provided an almost similar response for structurally related compounds, even with gradient elution. MS was the preferred detector for quantification when resolution between compounds was challenging, as it is often the case with natural extracts. The study successfully demonstrated that best HILIC conditions were obtained using an amino stationary phase composed of a polyethylenimine and formic acid-based mobile phase. These conditions were successfully applied to the analysis of stilbenoid-rich extracts from different parts of the vine. The elution order of stilbenoids followed the degree of polymerization. With CAD, the chromatographic profile was more representative of sample composition. It was demonstrated for the first time the interest of a combination of HILIC and CAD for analyzing stilbenes, offering a complementary approach to the classic RP analysis.
Collapse
Affiliation(s)
- Karen Gaudin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, F-33140 Villenave d'Ornon, France
| | - Rémy Cordazzo
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Wiktoria Serafin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Emma Lafon
- Laboratoire de Chimie Analytique, Collège Sciences la Santé, UFR des Sciences Pharmaceutiques, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Alexandra Gaubert
- Laboratoire de Chimie Analytique, Collège Sciences la Santé, UFR des Sciences Pharmaceutiques, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, F-33140 Villenave d'Ornon, France
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
12
|
Begh MZA, Khan J, Zehravi M, Sweilam SH, Raja AD, Muthukumar A, Haque MA, Kar NR, Singh LP, Priya BD, Alshehri MA, Ahmad I, Kang S, Moon S, Park MN, Emran TB, Kim B. Targeting Neurological Disorders with Stilbenes: Bridging the Preclinical-Clinical Gap. Int J Biol Sci 2024; 20:5474-5494. [PMID: 39494329 PMCID: PMC11528462 DOI: 10.7150/ijbs.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Neurological disorders (NDs) encompass a range of debilitating conditions that affect the nervous system, including prevalent illnesses such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. Despite significant ongoing studies, effective therapeutic strategies to halt or slow down the progression of these illnesses are still lacking. Stilbenes, a class of natural polyphenols, have shown potential as candidates for therapeutic strategies due to their capacity to protect the nervous system. Preclinical studies have provided strong evidence that stilbenes can regulate many cellular pathways implicated in neurodegeneration, with resveratrol being a well-studied compound that has shown the ability to reduce oxidative damage, promote neurogenesis, and enhance mitochondrial function - crucial for maintaining brain health. In preclinical animal models, initial research has also shown promise in additional substances such as piceatannol and pterostilbene. Furthermore, clinical studies have explored the therapeutic benefits of stilbenes in NDs. Despite promising results in preclinical research, the use of stilbenes in clinical trials is currently limited, with most studies focusing on resveratrol. Although several clinical studies have demonstrated the beneficial impact of resveratrol supplementation on brain health and degenerative consequences, other investigations have yielded ambiguous findings, underscoring the urgent need for more comprehensive and precisely planned clinical research. This study delves into the potential benefits of stilbenes as neuroprotective agents for NDs. It emphasizes the need for more clinical research to enhance our understanding of their therapeutic effectiveness in specific patient groups.
Collapse
Affiliation(s)
- Md. Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - A. Dinesh Raja
- Department of Pharmaceutics, KMCH College of Pharmacy, Coimbatore, Tamil Nadu 641048, India
| | - A. Muthukumar
- Department of Pharmacology, The Oxford College of Pharmacy, Bengaluru, Karnataka 560068, India
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad, India
| | - Nihar Ranjan Kar
- Centurion University of Technology and Management, Gopalpur, Balasore 756044, Odisha, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram 821305, India
| | - B. Dharani Priya
- Department of Pharmaceutics, KMCH College of Pharmacy, Coimbatore, Tamil Nadu 641048, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| |
Collapse
|
13
|
Pan T, Peng L, Dong J, Li L. Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway. Int J Mol Sci 2024; 25:10509. [PMID: 39408842 PMCID: PMC11476961 DOI: 10.3390/ijms251910509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The incidence and mortality of breast cancer increase year by year, and it is urgent to find high-efficiency and low-toxicity anti-cancer drugs. Pterostilbene (PTE) is a natural product with antitumor activity, but the specific antitumor mechanism is not very clear. Aerobic glycolysis is the main energy supply for cancer cells. Pyroptosis is an inflammatory, programmed cell death. The aim of this study was to investigate the effect of PTE on glycolysis and pyroptosis in EMT6 and 4T1 cells and the specific mechanism, and to elucidate the role of pyruvate kinase 2 (PKM2), a key enzyme in glycolysis, in the antitumor role of PTE. Our study suggested that PTE induced pyroptosis by inhibiting tumor glycolysis. PKM2 played an important role in both the inhibition of glycolysis and the induction of pyroptosis by PTE.
Collapse
Affiliation(s)
| | | | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| |
Collapse
|
14
|
Princiotto S, Pinna C, Mattio LM, Annunziata F, Beretta GL, Pinto A, Dallavalle S. Cytotoxicity of Benzofuran-Containing Simplified Viniferin Analogues. Pharmaceuticals (Basel) 2024; 17:1012. [PMID: 39204117 PMCID: PMC11357204 DOI: 10.3390/ph17081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids show wide structural diversity and mediate a great number of biological responses relevant for human health, including cancer prevention and cytotoxicity. Resveratrol is known to modulate several pathways directly linked to cancer progression, as well as its analogue pterostilbene, characterized by an increased metabolic stability and significant pharmacological activities. To study the potential anticancer activity of other stilbenoids, a home-made collection of resveratrol dimers and simplified analogues was tested on melanoma A375, non-small cell lung cancer H460 and PC3 prostate cancer cell lines. The structural determinants responsible for the antiproliferative activity have been highlighted. Moreover, to investigate the DNA damage ability of the selected molecules, the expression of the γ-H2AX after compound exposure was evaluated.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Luce Micaela Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Francesca Annunziata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy;
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (C.P.); (L.M.M.); (F.A.); (A.P.); (S.D.)
| |
Collapse
|
15
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
16
|
Li Q, Cao H, Xu X, Chen Y, Zhang Y, Mi Y, Zhu X, Shi Y, Liu J, Wang B, Xu CB, Wang C. Resveratrol attenuates cyclosporin A-induced upregulation of the thromboxane A 2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in the rat mesenteric artery. Eur J Pharmacol 2024; 972:176543. [PMID: 38582274 DOI: 10.1016/j.ejphar.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinya Xu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yufang Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanni Mi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China.
| |
Collapse
|
17
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
18
|
Chu LL, Tran CTB, Pham DTK, Nguyen HTA, Nguyen MH, Pham NM, Nguyen ATV, Phan DT, Do HM, Nguyen QH. Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids. Molecules 2024; 29:2252. [PMID: 38792114 PMCID: PMC11123965 DOI: 10.3390/molecules29102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids and stilbenoids, crucial secondary metabolites abundant in plants and fungi, display diverse biological and pharmaceutical activities, including potent antioxidant, anti-inflammatory, and antimicrobial effects. However, conventional production methods, such as chemical synthesis and plant extraction, face challenges in sustainability and yield. Hence, there is a notable shift towards biological production using microorganisms like Escherichia coli and yeast. Yet, the drawbacks of using E. coli and yeast as hosts for these compounds persist. For instance, yeast's complex glycosylation profile can lead to intricate protein production scenarios, including hyperglycosylation issues. Consequently, Corynebacterium glutamicum emerges as a promising alternative, given its adaptability and recent advances in metabolic engineering. Although extensively used in biotechnological applications, the potential production of flavonoid and stilbenoid in engineered C. glutamicum remains largely untapped compared to E. coli. This review explores the potential of metabolic engineering in C. glutamicum for biosynthesis, highlighting its versatility as a cell factory and assessing optimization strategies for these pathways. Additionally, various metabolic engineering methods, including genomic editing and biosensors, and cofactor regeneration are evaluated, with a focus on C. glutamicum. Through comprehensive discussion, the review offers insights into future perspectives in production, aiding researchers and industry professionals in the field.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Chau T. Bang Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
| | - Duyen T. Kieu Pham
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
| | - Hoa T. An Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
| | - Mi Ha Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
| | - Nhung Mai Pham
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Anh T. Van Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Dung T. Phan
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
| | - Ha Minh Do
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam (Q.H.N.)
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| |
Collapse
|
19
|
Farhan M. Cytotoxic Activity of the Red Grape Polyphenol Resveratrol against Human Prostate Cancer Cells: A Molecular Mechanism Mediated by Mobilization of Nuclear Copper and Generation of Reactive Oxygen Species. Life (Basel) 2024; 14:611. [PMID: 38792632 PMCID: PMC11122162 DOI: 10.3390/life14050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Resveratrol, a polyphenolic compound found primarily in red grapes and pomegranates is known as an antioxidant but can act as a pro-oxidant when copper ions are present. Here, resveratrol is demonstrated to reduce cell growth (as evaluated by MTT assay) and promote apoptosis-like cell death (as measured by Histone/DNA ELISA) in prostate cancer cell lines PC3 and C42B. This effect is effectively inhibited by a copper chelator (neocuproine) and reactive oxygen species (ROS) scavengers (thiourea for hydroxyl radical, superoxide dismutase for superoxide anion, and catalase for hydrogen peroxide). These inhibitory effects provide evidence that intracellular copper reacts with resveratrol within cancer cells, resulting in DNA damage via the generation of reactive oxygen species. Additionally, it has been demonstrated that non-tumorigenic epithelial cell lines (MCF-10A) grown in media supplemented with copper are more susceptible to growth inhibition by resveratrol, as confirmed by the observed reduction in cell proliferation. Copper supplementation induces enhanced expression of the copper transporter CTR1 in MCF-10A cells, which is reduced by the addition of resveratrol to the media. The selective cell death of cancer cells generated by copper-mediated and ROS mechanisms may help to explain the anticancer properties of resveratrol.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
20
|
Zhu C, Saquet A, Maraval V, Bijani C, Cui X, Poater A, Chauvin R. From Stilbenes to carbo-Stilbenes: an Encouraging Prospect. Chemistry 2024; 30:e202400451. [PMID: 38407368 DOI: 10.1002/chem.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Beyond previously described carbo-naphthalene and carbo-biphenyl, a novel type of bis-carbo-benzenic molecules is envisaged from the stilbene parent. The synthesis, structure, spectroscopic and electrochemical properties of two such carbo-stilbenes are described at complementary experimental and computational DFT levels. In the selected targets, the bare skeletal carbo-mer of carbo-stilbene is decorated by 8 or 10 phenyl groups, 0 or 2 tert-butyl groups, and 2 n-octyl chains, the later substituents being introduced to compensate anticipated solubility issues. As in the parent stilbene series, isomers of the phenylated carbo-stilbenes are characterized. The cis- and trans-isomers are, however, formed in almost equal amounts and could not be separated by either chromatography or crystallization. Nevertheless, due to a slow interconversion at the NMR time scale (up to 55 °C) the 1H NMR signals of both isomers of the two carbo-stilbenes could be tentatively assigned. The calculated structure of the cis-isomer exhibits a helical shape, consistent with the observed magnetic shielding of phenyl p-CH nuclei residing inside the shielding cone of the facing C18 ring. The presence of the two isomers in solution also gives rise to quite broad UV-vis absorption spectra with main bands at ca 460, 560 and 710 nm, and a significant bathochromic shift for the decaphenylated carbo-stilbene vs the di-tert-butyl-octaphenylated counterpart. Square wave voltammograms do not show any resolution of the two isomers, giving a reversible reduction wave at -0.65 or -0.58 V/SCE, and an irreversible oxidation peak at 1.11 V/SCE, those values being classical for most carbo-benzene derivatives. Calculated NICS values (NICS(1)=-12.5±0.2 ppm) also indicate that the aromatic nature of the C18 rings is not markedly affected by the dialkynylbutatriene (DAB) connector between them.
Collapse
Affiliation(s)
- Chongwei Zhu
- Faculté Science et Ingénierie - Département de Chimie., Unsaturated molecules for physics, biology and chemistry group., Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31-062, Toulouse Cedex 09, France
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Alix Saquet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/ Mª Aurèlia, Capmany 69, 17003, Girona, Catalonia, Spain
| | - Remi Chauvin
- Faculté Science et Ingénierie - Département de Chimie., Unsaturated molecules for physics, biology and chemistry group., Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31-062, Toulouse Cedex 09, France
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
21
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
22
|
Reis FN, Pelá VT, Câmara JVF, Ventura TMO, Rodrigues CMVBF, Lima KPD, Buzalaf MAR. A new role for resveratrol: Protection of enamel against erosion. J Dent 2024; 141:104810. [PMID: 38110112 DOI: 10.1016/j.jdent.2023.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE The aim of this study was to determine the effect of different concentrations of resveratrol in protecting enamel against initial dental erosion in vitro. METHODS Ninety bovine enamel samples (4 × 4 mm) were divided into six groups: Phosphate buffered saline (negative control; PBS), Commercial solution (Elmex Erosion Protection™; positive control) and resveratrol at 4 different concentrations (1, 10, 100 or 400 µg/mL). Initially, the samples were incubated in saliva for the formation of the acquired pellicle (250 µL, 1 h, 37 °C, 250 rpm). Afterward, the samples were incubated in the respective treatments (250 µL, 1 min, 37 °C, 250 rpm) and then reincubated in saliva (250 µL, 1 h, 37 °C, 250 rpm). Finally, the samples were subjected to an erosive challenge by incubating in 1 % citric acid (1 mL, pH 3.5, 1 min, 25 °C, 250 rpm). The percentage surface microhardness change (% SMC) was assessed using a microhardness tester. Data were analyzed by Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS The treatments with Elmex™ and resveratrol (1, 10 and 100 µg/mL) significantly protected enamel compared to the negative control, without significant differences among them. However, the group treated with the highest resveratrol concentration (400 µg/mL) did not show a significant difference from the negative control. CONCLUSIONS Resveratrol at concentrations ranging from 1 to 100 µg/ml was effective in preventing loss of enamel surface microhardness. CLINICAL SIGNIFICANCE This result suggests a potential new direction for the development of dental products based on resveratrol for the prevention of dental erosion.
Collapse
Affiliation(s)
- Fernanda Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil
| | - Vinicius Taioqui Pelá
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil
| | - João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil
| | - Talita Mendes Oliveira Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil
| | | | - Karen Pavan de Lima
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo 17012-901, Brazil.
| |
Collapse
|
23
|
Wang KL, Chiang YF, Huang KC, Chen HY, Ali M, Hsia SM. Alleviating 3-MCPD-induced male reproductive toxicity: Mechanistic insights and resveratrol intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115978. [PMID: 38262097 DOI: 10.1016/j.ecoenv.2024.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/25/2024]
Abstract
3-Monochloropropane-1, 2-diol (3-MCPD), a food-borne contaminant, is widely regarded as the primary cause of male infertility. At present, identifying a method to improve/reduce the male reproductive toxicity caused by 3-MCPD is important. In our study, we explored the potential application of resveratrol (RSV) in mitigating the adverse effects of 3-MCPD. Using 7-week-old Sprague-Dawley (SD) rats as animal models, we investigated the impacts and underlying mechanisms of 3-MCPD and RSV on reproductive function. The administration of 3-MCPD led to significant reductions in testicular and epididymal weights, as well as disruptions in spermatogenesis and histological abnormalities. However, co-treatment with RSV and 3-MCPD mitigated these adverse effects. In vitro study, RSV exhibited the ability to reverse the decline in Leydig and Sertoli cell populations inflicted by 3-MCPD treatment. Mechanistically, RSV reduced endoplasmic reticulum stress (PARP), inflammasome activation (NLRP3), and autophagy-mediated lysosome dysfunction (p62 and LC3BII) induced by 3-MCPD. In addition, 3-MCPD treatment increased the expression level of steroidogenesis-related proteins, steroidogenic acute regulatory (StAR) and CYP11A1, but RSV normalized StAR expression. Moreover, 3-MCPD-induced pro-inflammatory responses were counteracted by RSV treatment, with the cytokine reduction and modulation of CD206 expression, a marker of macrophage activation. These findings indicate that RSV attenuates 3-MCPD-induced reproductive toxicity, highlighting its application potential as an adjuvant agent for male reproductive health.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Deh Yu College of Nursing and Health, Keelung 203301, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, 11031 Taipei, Taiwan; School of Food and Safety, Taipei Medical University, 11031 Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, 11031 Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 11031 Taipei, Taiwan.
| |
Collapse
|
24
|
Alsharairi NA. Experimental Studies on the Therapeutic Potential of Vaccinium Berries in Breast Cancer-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:153. [PMID: 38256707 PMCID: PMC10818444 DOI: 10.3390/plants13020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Breast cancer (BC) is the largest contributor to cancer deaths in women worldwide. Various parts of plants, including fruits, are known for their therapeutic properties and are used in traditional medicine. Fruit species exhibit anticancer activities due to the presence of bioactive natural compounds such as flavonoids and carotenoids. The Vaccinium spp. are fleshy berry-like drupes and are rich in bioactive compounds, with flavonols, flavanols, chalcones, and phenolic acids as the major groups of compounds. While there is clear evidence linking Vaccinium berries with a decreased risk of BC both in in vivo and in vitro experiments, the exact mechanisms involved in the protective effects of Vaccinium spp. rich extracts on BC cells are not fully understood. Thus, the purpose of this review is to highlight the mechanisms of action involved in the therapeutic potential of Vaccinium berries against BC in experimental models.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
25
|
Farhan M, Rizvi A. The Pharmacological Properties of Red Grape Polyphenol Resveratrol: Clinical Trials and Obstacles in Drug Development. Nutrients 2023; 15:4486. [PMID: 37892561 PMCID: PMC10610408 DOI: 10.3390/nu15204486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Resveratrol is a stilbenoid from red grapes that possesses a strong antioxidant activity. Resveratrol has been shown to have anticancer activity, making it a promising drug for the treatment and prevention of numerous cancers. Several in vitro and in vivo investigations have validated resveratrol's anticancer capabilities, demonstrating its ability to block all steps of carcinogenesis (such as initiation, promotion, and progression). Additionally, resveratrol has been found to have auxiliary pharmacological effects such as anti-inflammatory, cardioprotective, and neuroprotective activity. Despite its pharmacological properties, several obstacles, such as resveratrol's poor solubility and bioavailability, as well as its adverse effects, continue to be key obstacles to drug development. This review critically evaluates the clinical trials to date and aims to develop a framework to develop resveratrol into a clinically viable drug.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|