1
|
Yang X, Yan S, Li Y, Li G, Zhao Y, Sun S, Su J, Cui Z, Huo J, Sun Y, Yi H, Li Z, Wang S. Defense-Related Enzyme Activities and Metabolomic Analysis Reveal Differentially Accumulated Metabolites and Response Pathways for Sheath Blight Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3554. [PMID: 39771252 PMCID: PMC11677778 DOI: 10.3390/plants13243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Rice sheath blight (RSB), caused by the pathogenic fungus Rhizoctonia solani, poses a significant threat to global food security. The defense mechanisms employed by rice against RSB are not well understood. In our study, we analyzed the interactions between rice and R. solani by comparing the phenotypic changes, ROS content, and metabolite variations in both tolerant and susceptible rice varieties during the early stages of fungal infection. Notably, there were distinct phenotypic differences in the response to R. solani between the tolerant cultivar Zhengdao22 (ZD) and the susceptible cultivar Xinzhi No.1 (XZ). We observed that the activities of five defense-related enzymes in both tolerant and susceptible cultivars changed dynamically from 0 to 72 h post-infection with R. solani. In particular, the activities of superoxide dismutase and peroxidase were closely associated with resistance to RSB. Metabolomic analysis revealed 825 differentially accumulated metabolites (DAMs) between the tolerant and susceptible varieties, with 493 DAMs responding to R. solani infection. Among these, lipids and lipid-like molecules, organic oxygen compounds, phenylpropanoids and polyketides, organoheterocyclic compounds, and organic acids and their derivatives were the most significantly enriched. One DAM, P-coumaraldehyde, which responded to R. solani infection, was found to effectively inhibit the growth of R. solani, Magnaporthe grisea, and Ustilaginoidea virens. Additionally, multiple metabolic pathways, including amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of terpenoids and polyketides, are likely involved in RSB resistance. Our research provides valuable insights into the molecular mechanisms underlying the interaction between rice and R. solani.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yujiao Zhao
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jingping Su
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Heng Yi
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhibin Li
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Shengjun Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
2
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
3
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|