1
|
Zhao Q, Zheng X, Wang C, Wang Q, Wei Q, Liu X, Liu Y, Chen A, Jiang J, Zhao X, He T, Qi J, Han Y, Qin H, Xie F, Chen Y. Exogenous Melatonin Improves Drought Tolerance by Regulating the Antioxidant Defense System and Photosynthetic Efficiency in Fodder Soybean Seedings. PLANTS (BASEL, SWITZERLAND) 2025; 14:460. [PMID: 39943023 PMCID: PMC11819762 DOI: 10.3390/plants14030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Fodder soybean (Glycine max L.) with high protein and yield is a popular forage grass in northeast China. Seasonal drought inhibits its growth and development during seedling stage. The objective of this study was to observe morpho-physiological changes in fodder soybean seedlings under melatonin (MT) treatments and identify appropriate concentration to alleviate the drought damage. Two varieties commonly used in northeast China were treated with 0, 50, 100, and 150 μM melatonin at soil water content of 30%. The results indicated that applying melatonin enhanced height, biomass and altered root morphology of fodder soybean seedlings under water-deficient conditions. The treatments with melatonin at different concentrations significantly reduced the contents of H2O2, O2- and MDA, while boosting the capacity of the antioxidant defense system and the content of osmotic adjustment substances. Meanwhile, increases in light energy capture and transmission efficiency were observed. Furthermore, treatment with melatonin regulated the expression levels of genes associated with photosynthesis and the antioxidant defense system. Notably, 100 μM melatonin treatment produced the most favorable effect in all treatments under drought conditions. These research results provide new information for enhancing the drought tolerance of fodder soybean using chemical measures.
Collapse
Affiliation(s)
- Qianhan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueling Zheng
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Chen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qinyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Qiyun Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xiashun Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yujiao Liu
- Fujian Zhongke Biological Co., Ltd., Xiamen 361001, China
| | - Along Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jia Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Xueying Zhao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Tiantian He
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Jiayi Qi
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| | - Yuchen Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Haonan Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Q.Z.)
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China; (X.Z.)
| |
Collapse
|
2
|
Wang Q, Lu X, Sun Y, Yu J, Cao Q, Xiao Y, Jiang N, Chen L, Zhou Y. Studies on the Physiological Response of Hemerocallis middendorffii to Two Types of Drought Stresses. Int J Mol Sci 2024; 25:13733. [PMID: 39769494 PMCID: PMC11677105 DOI: 10.3390/ijms252413733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Drought is a major environmental factor limiting plant growth and development. Hemerocallis middendorffii is a perennial herbaceous plant with high drought resistance, and high ornamental and application values. Understanding the mechanism of drought stress resistance in H. middendorffii is helpful for better utilization of plant resources and selection of excellent germplasms. In this study, the phenological and physiological traits of H. middendorffii were comprehensively analyzed under natural drought stress (ND) and PEG-simulated drought stress (PD), and the resistance of H. middendorffii to different levels of drought stress was evaluated. ND was treated using a natural water loss method. PD was treated under drought stress by using PEG-6000. H. middendorffii were able to grow within 15 d of ND and 4 d of 20% PD. Beyond this drought time, H. middendorffii will wilt and lose their ornamental value. Further study showed that H. middendorffii protect themselves from damage and enhance drought resistance mainly by increasing the content of osmoregulatory substances, enhancing the activity of antioxidant enzymes, and inhibiting photosynthesis. Malondialdehyde (MDA) content accumulated rapidly at 15 d of ND and 7 d of PD. Antioxidant enzyme activities peaked at 15 d of ND and 4 d of PD. Photosynthetic parameters decreased at 15 d of ND and 4 d of 20% PD, respectively. Moreover, we identified that the HmWRKY9 gene was up-regulated for expression in the leaves after ND and PD. HmWRKY9 may be involved in regulating the response of H. middendorffii to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lifei Chen
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Q.W.); (X.L.); (Y.S.); (J.Y.); (Q.C.); (Y.X.); (N.J.)
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Q.W.); (X.L.); (Y.S.); (J.Y.); (Q.C.); (Y.X.); (N.J.)
| |
Collapse
|
3
|
Su X, Yang Z, Zhou C, Geng S, Chen S, Cai N, Tang J, Chen L, Xu Y. The Response and Evaluation of Morphology, Physiology, and Biochemistry Traits in Triploid Passiflora edulis Sims 'Mantianxing' to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1685. [PMID: 38931117 PMCID: PMC11207800 DOI: 10.3390/plants13121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
As one of the most influential environmental factors, drought stress greatly impacts the development and production of plants. Triploid-induced Passiflora edulis Sims 'Mantianxing' is an important new cultivar for multi-resistance variety selective breeding, which is one of the P. edulis breeding essential targets. However, the performance of triploid 'Mantianxing' under drought stress is unknown. In order to study the drought resistance of triploid 'Mantianxing', our study compared drought-related indicators in diploids and triploids under natural drought experiments, including morphological, physiological, and biochemical characteristics. Results showed that triploid P. edulis 'Mantianxing' showed variable responses to drought treatment. Compared with diploids, triploids showed higher photosynthesis and chlorophyll fluorescence, osmotic adjustment substances, and antioxidant enzyme activity under drought stress and faster chlorophyll biosynthesis and growth recovery after rewatering. Generally speaking, these results indicate that the drought resistance of triploid P. edulis is superior to diploid. This study provides scientific information for breeding stress tolerance variety of P. edulis 'Mantianxing' new cultivar.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Zhenxin Yang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Chiyu Zhou
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shili Geng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Nianhui Cai
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| | - Yulan Xu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (X.S.); (Z.Y.); (C.Z.); (S.G.); (N.C.)
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China; (S.C.); (J.T.); (L.C.)
| |
Collapse
|
4
|
Zhang Y, Liu W, Lu X, Li S, Li Y, Shan Y, Wang S, Zhou Y, Chen L. Effects of different light conditions on morphological, anatomical, photosynthetic and biochemical parameters of Cypripedium macranthos Sw. PHOTOSYNTHESIS RESEARCH 2024; 160:97-109. [PMID: 38702531 DOI: 10.1007/s11120-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
In this study, the morphological (plant height, leaf length and width, stem diameter and leaf number), anatomical (epidermal cell density and thickness, Stomatal length and width), photosynthetic (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, relative humidity, leaf temperature and chlorophyll fluorescence parameters) and biochemical parameters (the content of soluble sugar, soluble protein, proline, malondialdehyde and electrical conductivity) of Cypripedium macranthos Sw. in Changbai Mountain were determined under different light conditions (L10, L30, L50, L100). The results showed that morphological values including plant height, leaf area, stem diameter and leaf number of C. macranthos were smaller under the condition of full light at L100. The epidermal cell density and epidermal thickness of C. macranthos were the highest under L30 and L50 treatments, respectively. It had the highest net photosynthetic rate (Pn) and chlorophyll content under L50 treatment. Meanwhile, correlation analysis indicated that photosynthetically active radiation (PAR) and water use efficiency (WUE) were the main factors influencing Pn. C. macranthos accumulated more soluble sugars and soluble proteins under L100 treatment, while the degree of membrane peroxidation was the highest and the plant was severely damaged. In summary, the adaptability of C. macranthos to light conditions is ranked as follows L50 > L30 > L10 > L100. Appropriate light conditions for C. macranthos are 30%-50% of full light, which should be taken into account in protection and cultivation.
Collapse
Affiliation(s)
- Yuqing Zhang
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wei Liu
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xi Lu
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shuang Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuze Shan
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Shizhuo Wang
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Lifei Chen
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
5
|
Huang P, Xu Z, He W, Yang H, Li B, Ding W, Lei Y, Abbas A, Hameed R, Wang C, Sun J, Du D. The Cooperation Regulation of Antioxidative System and Hormone Contents on Physiological Responses of Wedelia trilobata and Wedelia chinensis under Simulated Drought Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:472. [PMID: 38498409 PMCID: PMC10892296 DOI: 10.3390/plants13040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 03/20/2024]
Abstract
Drought-induced metabolic dysregulation significantly enhances the production of reactive oxygen species (ROS), which, in turn, exerts a substantial influence on the oxidation-reduction regulatory status of cells. These ROS, under conditions of drought stress, become highly reactive entities capable of targeting various plant organelles, metabolites, and molecules. Consequently, disruption affects a wide array of metabolic pathways and eventually leads to the demise of the cells. Given this understanding, this study aimed to investigate the effects of different drought stress levels on the growth and development of the invasive weed Wedelia trilobata and its co-responding native counterpart Wedelia chinensis. Both plants evolved their defense mechanisms to increase their antioxidants and hormone contents to detoxify ROS to avoid oxidative damage. Still, the chlorophyll content fluctuated and increased in a polyethylene-glycol-simulated drought. The proline content also rose in the plants, but W. chinensis showed a significant negative correlation between proline and malondialdehyde in different plant parts. Thus, W. trilobata and W. chinensis exhibited diverse or unlike endogenous hormone regulation patterns under drought conditions. Meanwhile, W. trilobata and W. chinensis pointedly increased the content of indole acetic acid and gibberellic acid in a different drought stress environment. A positive correlation was found between endogenous hormones in other plant parts, including in the roots and leaves. Both simulated and natural drought conditions exerted a significant influence on both plant species, with W. trilobata displaying superior adaptation characterized by enhanced growth, bolstered antioxidant defense mechanisms, and heightened hormonal activities.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Zhiwei Xu
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Weijie He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hong Yang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wendian Ding
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yuze Lei
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|