1
|
Ali A, Jabeen N, Farruhbek R, Chachar Z, Laghari AA, Chachar S, Ahmed N, Ahmed S, Yang Z. Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic advances. FRONTIERS IN PLANT SCIENCE 2025; 16:1543714. [PMID: 40161228 PMCID: PMC11951869 DOI: 10.3389/fpls.2025.1543714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
Nitrogen is a critical nutrient for plant growth and productivity, but inefficiencies in its use in agriculture present both economic and environmental challenges. Enhancing nitrogen use efficiency (NUE) is essential for promoting sustainable crop production and mitigating the negative impacts of nitrogen loss, such as water pollution and greenhouse gas emissions. This review discusses various strategies aimed at improving NUE, with a focus on agronomic practices, genetic advancements, and integrated management approaches. Traditional agronomic methods, including split nitrogen application and the use of controlled-release fertilizers, are explored alongside precision agriculture techniques, which enable real-time adjustments to nitrogen application based on crop and soil conditions. Advances in genetics and biotechnology, such as conventional breeding, genetic modification, and genome editing, have contributed to the development of crop varieties with improved nitrogen uptake and assimilation. Additionally, the role of beneficial microbes, including nitrogen-fixing bacteria and mycorrhizal fungi, is highlighted as a natural means of enhancing nitrogen availability and reducing reliance on synthetic fertilizers. The review further emphasizes sustainable practices such as legume-based crop rotations, continuous cover cropping, and organic fertilization, which contribute to soil nitrogen enrichment and overall soil health. By combining these agronomic, genetic, and microbial strategies, a holistic nitrogen management approach can be achieved, maximizing crop yields while minimizing environmental impacts. This integrated strategy supports the development of resilient and sustainable agricultural systems, promoting long-term soil fertility and productivity.
Collapse
Affiliation(s)
- Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Nida Jabeen
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunication, Chongqing, China
| | - Rasulov Farruhbek
- Andijan State Medical Institute, Department of Pharmaceutical Sciences, Andijan, Uzbekistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Azhar Ali Laghari
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shoaib Ahmed
- Department of Agronomy, Sindh Agriculture University Campus, Umerkot, Pakistan
- Department of Agronomy, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
| |
Collapse
|
2
|
Singh A, Chauhan R, Prasad R, Agrawal AA, Sah P, Goel A. Unveiling the potential of bioslurry and biogenic ZnO nanoparticles formulation as significant bionanofertilizer by ameliorating rhizospheric microbiome of Vigna radiata. Int Microbiol 2025:10.1007/s10123-025-00649-4. [PMID: 40032755 DOI: 10.1007/s10123-025-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Advancements in nanotechnology, particularly the use of bionanofertilizers, show promise for sustainable agriculture by enhancing soil health and reducing reliance on conventional fertilizers. This study explored the impact of a bioslurry and biogenic zinc oxide (ZnO) nanoparticle formulation on microbial diversity in the rhizosphere of Vigna radiata (mung bean) using 16S rRNA sequencing. High-quality reads from both untreated and treated soil samples revealed a dominance of Archaea, though its proportion was reduced in the treated sample (66% in untreated, 58% in treated). The treated soil showed an increased abundance of beneficial bacterial phyla, including Acidobacteria (+ 6%), Actinobacteria (+ 2%), and Firmicutes (+ 2%). Notably, Acidobacteria-6 and Chloroacidobacteria, essential for nutrient cycling, were enriched in treated soil. Alpha diversity (Chao1 and Shannon indices) was lower in treated samples, indicating selective enhancement of beneficial microbes. Functional analyses like Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and Statistical Analysis of Taxonomic and Functional Profiles (STAMP) analysis highlighted increased pathways related to motility, chemotaxis, and metabolic processes in the treated soil. These findings suggest that ZnO NPs and bioslurry treatment at 250 ppm improves soil microbial composition and functional attributes, supporting its potential as a bionanofertilizer for soil health restoration and enhanced plant growth.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ritika Chauhan
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845801, Bihar, India
| | - Amay A Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), University of Saarland, Saarbrücken, Germany
| | - Pankaj Sah
- Department of Applied Sciences, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences-Muscat, P.O. Box 74, Muscat, 133, Oman
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
3
|
Zaman W, Ayaz A, Park S. Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2025; 14:716. [PMID: 40094659 PMCID: PMC11901503 DOI: 10.3390/plants14050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has emerged as a transformative field in agriculture, offering innovative solutions to enhance plant growth and resilience against abiotic stresses. This review explores the diverse applications of nanomaterials in agriculture, focusing on their role in promoting plant development and improving tolerance to drought, salinity, heavy metals, and temperature fluctuations. The method classifies nanomaterials commonly employed in plant sciences and examines their unique physicochemical properties that facilitate interactions with plants. Key mechanisms of nanomaterial uptake, transport, and influence on plants at the cellular and molecular levels are outlined, emphasizing their effects on nutrient absorption, photosynthetic efficiency, and overall biomass production. The molecular basis of stress tolerance is examined, highlighting nanomaterial-induced regulation of reactive oxygen species, antioxidant activity, gene expression, and hormonal balance. Furthermore, this review addresses the environmental and health implications of nanomaterials, emphasizing sustainable and eco-friendly approaches to mitigate potential risks. The integration of nanotechnology with precision agriculture and smart technologies promises to revolutionize agricultural practices. This review provides valuable insights into the future directions of nanomaterial R&D, paving the way for a more resilient and sustainable agricultural system.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Zhao W, Wang T, Dong H, Zhao W, Song K, Zhu N. Multifunctional Roles and Ecological Implications of Nano-Enabled Technologies in Oryza sativa Production Systems: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:528. [PMID: 40006787 PMCID: PMC11859622 DOI: 10.3390/plants14040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Micro-nanomaterials have garnered significant attention in rice (Oryza sativa L.) cultivation due to their unique physicochemical properties. This study reviews the multifunctional applications of micro-nanomaterials in enhancing rice resilience, promoting nutrient uptake, improving photosynthetic efficiency, and increasing the utilization rates of fertilizers and pesticides. Using keyword and clustering analyses, this review identifies key research hotspots and emerging trends in the field, including heavy metal stress, nanoplastic pollution, and biochar applications. While early studies predominantly focused on the synthesis and characterization of these materials, recent research has shifted towards evaluating their comprehensive ecological impacts on rice production systems. Despite the promising potential of micro-nanomaterials in improving rice yield and quality while supporting sustainable agriculture, concerns about their long-term accumulation in ecosystems and potential toxicity remain unresolved. Future research should prioritize the development of cost-effective, efficient, and environmentally friendly micro-nanomaterials and establish standardized frameworks for ecological risk assessments to facilitate their large-scale agricultural application. This study provides theoretical insights and practical references for advancing micro-nanotechnology in global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Wei Zhao
- School of Life Science, Changchun Normal University, Changchun 130032, China; (W.Z.); (H.D.); (W.Z.)
| | - Ting Wang
- School of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030810, China;
| | - He Dong
- School of Life Science, Changchun Normal University, Changchun 130032, China; (W.Z.); (H.D.); (W.Z.)
| | - Wanru Zhao
- School of Life Science, Changchun Normal University, Changchun 130032, China; (W.Z.); (H.D.); (W.Z.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (W.Z.); (H.D.); (W.Z.)
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Nina Zhu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (W.Z.); (H.D.); (W.Z.)
| |
Collapse
|
5
|
Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, Srivastava A, Garg SK, Singh VP. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact 2024; 23:254. [PMID: 39304847 DOI: 10.1186/s12934-024-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Bionanofertilizers are promising eco-friendly alternative to chemical fertilizers, leveraging nanotechnology and biotechnology to enhance nutrient uptake by plants and improve soil health. They consist of nanoscale materials and beneficial microorganisms, offering benefits such as enhanced seed germination, improved soil quality, increased nutrient use efficiency, and pesticide residue degradation, ultimately leading to improved crop productivity. Bionanofertilizers are designed for targeted delivery of nutrients, controlled release, and minimizing environmental pollutants, making them a sustainable option for agriculture. These fertilizers also have the potential to enhance plant growth, provide disease resistance, and contribute to sustainable farming practices. The development of bionanofertilizers addresses the adverse environmental impact of chemical fertilizers, offering a safer and productive means of fertilization for agricultural practices. This review provides substantial evidence supporting the potential of bionanofertilizers in revolutionizing agricultural practices, offering eco-friendly and sustainable solutions for crop management and soil health.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Shivam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rishabh Anand Omar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Prerna Chauhan
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Kumar Sinhal
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Amit Singh
- Department of Law, MJP Rohilkhand University, Bareilly, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
6
|
Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, El Gharrak A, Akil A, Essemlali Y, Zahouily M. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. NANOSCALE 2024; 16:4484-4513. [PMID: 38314867 DOI: 10.1039/d3nr05012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayyoub Ammar
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca B.P. 146, Morocco.
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Adil Akil
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youness Essemlali
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
7
|
Sutulienė R, Brazaitytė A, Urbutis M, Tučkutė S, Duchovskis P. Nanoparticle Effects on Ice Plant Mineral Accumulation under Different Lighting Conditions and Assessment of Hazard Quotients for Human Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:681. [PMID: 38475526 DOI: 10.3390/plants13050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate how different HPS and LED lighting combined with CuO and ZnO NPs influence the elemental composition of ice plants (Mesembryanthemum crystallinum L.). Plants were grown in hydroponic systems with LED and HPS lighting at 250 ± 5 μmol m-2 s-1 intensity, sprayed with aqueous suspensions of CuO (40 nm, 30 ppm) and ZnO (35-45 nm, 800 ppm) NPs; their elemental composition was measured using an ICP-OES spectrometer and hazard quotients were calculated. LED lighting combined with the application of ZnO NPs significantly affected Zn accumulation in plant leaves. Cu accumulation was higher when plants were treated with CuO NPs and HPS illumination combined. The calculated hazard quotients showed that the limits are not exceeded when applying our selected concentrations and growth conditions on ice plants. In conclusion, ice plants had a more significant positive effect on the accumulation of macro- and microelements under LED lighting than HPS. NPs had the strongest effect on the increase in their respective microelements.
Collapse
Affiliation(s)
- Rūta Sutulienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Aušra Brazaitytė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Martynas Urbutis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Simona Tučkutė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| | - Pavelas Duchovskis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno 30, Kaunas Distr., 54333 Babtai, Lithuania
| |
Collapse
|
8
|
Yap CK, Al-Mutairi KA. A Conceptual Model Relationship between Industry 4.0-Food-Agriculture Nexus and Agroecosystem: A Literature Review and Knowledge Gaps. Foods 2024; 13:150. [PMID: 38201178 PMCID: PMC10778930 DOI: 10.3390/foods13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
With the expected colonization of human daily life by artificial intelligence, including in industry productivity, the deployment of Industry 4.0 (I4) in the food agriculture industry (FAI) is expected to revolutionize and galvanize food production to increase the efficiency of the industry's production and to match, in tandem, a country's gross domestic productivity. Based on a literature review, there have been almost no direct relationships between the I4-Food-Agriculture (I4FA) Nexus and the agroecosystem. This study aimed to evaluate the state-of-the-art relationships between the I4FA Nexus and the agroecosystem and to discuss the challenges in the sustainable FAI that can be assisted by the I4 technologies. This objective was fulfilled by (a) reviewing all the relevant publications and (b) drawing a conceptual relationship between the I4FA Nexus and the agroecosystem, in which the I4FA Nexus is categorized into socio-economic and environmental (SEE) perspectives. Four points are highlighted in the present review. First, I4 technology is projected to grow in the agricultural and food sectors today and in the future. Second, food agriculture output may benefit from I4 by considering the SEE benefits. Third, implementing I4 is a challenging journey for the sustainable FAI, especially for the small to medium enterprises (SMEs). Fourth, environmental, social, and governance (ESG) principles can help to manage I4's implementation in agriculture and food. The advantages of I4 deployment include (a) social benefits like increased occupational safety, workers' health, and food quality, security, and safety; (b) economic benefits, like using sensors to reduce agricultural food production costs, and the food supply chain; and (c) environmental benefits like reducing chemical leaching and fertilizer use. However, more studies are needed to address social adaptability, trust, privacy, and economic income uncertainty, especially in SMEs or in businesses or nations with lower resources; this will require time for adaptation to make the transition away from human ecology. For agriculture to be ESG-sustainable, the deployment of I4FA could be an answer with the support of an open-minded dialogue platform with ESG-minded leaders to complement sustainable agroecosystems on a global scale.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk P.O. Box 741, Saudi Arabia;
| |
Collapse
|