1
|
Pino-Ramos LL, Gómez-Plaza E, Olate-Olave VR, Laurie VF, Bautista-Ortín AB. Protein extracts from amaranth and quinoa as novel fining agents for red wines. Food Chem 2024; 448:139055. [PMID: 38554587 DOI: 10.1016/j.foodchem.2024.139055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
Due to allergenic concerns, only pea, potato, and wheat proteins have been approved as alternatives for replacing animal-based fining agents in wines. In pursuit of other substitutes, this work aimed to determine the fining ability of amaranth (Amaranthus caudatus L.) proteins (AP) in red wine, compared to quinoa (Chenopodium quinoa Willd.) (QP) and a commercial pea protein. Phenolic and volatile composition, as well as color characteristics, were analyzed. AP was as effective as QP at decreasing condensed tannins, with AP at 50 g/hL being the most effective treatment (25.6% reduction). QP and AP produced a minor or no statistical change in the total anthocyanins and wine color intensity. They reduced the total ester concentration, but the total alcohols remained unchanged. The outcomes of AP and QP were similar, and sometimes better than the pea proteins, thus suggesting that they could be promising options for the development of novel fining agents.
Collapse
Affiliation(s)
- Liudis L Pino-Ramos
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 3460000 Talca, Chile
| | - Encarna Gómez-Plaza
- Departamento de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Verónica R Olate-Olave
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 3460000 Talca, Chile
| | - V Felipe Laurie
- Laboratorio de enología, Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 3460000 Talca, Chile.
| | - Ana Belen Bautista-Ortín
- Departamento de Tecnología de Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain.
| |
Collapse
|
2
|
Mulaudzi T, Sias G, Nkuna M, Ndou N, Hendricks K, Ikebudu V, Koo AJ, Ajayi RF, Iwuoha E. Seed Priming with MeJa Prevents Salt-Induced Growth Inhibition and Oxidative Damage in Sorghum bicolor by Inducing the Expression of Jasmonic Acid Biosynthesis Genes. Int J Mol Sci 2023; 24:10368. [PMID: 37373514 DOI: 10.3390/ijms241210368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Gershwin Sias
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Kaylin Hendricks
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vivian Ikebudu
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rachel F Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
3
|
Zhu F. Amaranth proteins and peptides: Biological properties and food uses. Food Res Int 2023; 164:112405. [PMID: 36738021 DOI: 10.1016/j.foodres.2022.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Amaranthus grains have attracted great attention due to its attractive health benefits. The grains have processing properties (e.g., starch related properties) similar to those of common cereals. Amaranth grains are gluten free and protein is a significant component of these grains. Proteins of the grains have been used in various food applications such as formulations of edible films and emulsions for controlled release of bioactive compounds. The proteins have been hydrolyzed using different enzymes to produce peptides and hydrolysates, which showed a range of biological functions including anti-hypertensive and antioxidant activities among others. They have been formulated into staple foods including breads and pastas for improved nutritional quality. This review summarizes the recent advances of the last 5 years in understanding the biological functions and food applications of proteins, protein hydrolysates and peptides from the grains of different Amaranthus species. Limitations in the studies summarized are critically discussed with an aim to improve the efficiency in amaranth grain protein and peptide research.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Migut D, Jańczak-Pieniążek M, Piechowiak T, Buczek J, Balawejder M. Physiological Response of Maize Plants ( Zea mays L.) to the Use of the Potassium Quercetin Derivative. Int J Mol Sci 2021; 22:7384. [PMID: 34299004 PMCID: PMC8306421 DOI: 10.3390/ijms22147384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Plant production technologies based solely on the improvement of plants themselves face obstacles resulting from the natural limitations of the biological potential of varieties. Therefore, new substances are sought that positively influence the growth and development of plants and increase resistance to various biotic and abiotic stresses, which also translates into an increase in obtained yields. The exogenous application of various phytoprotectants shows great promise in terms of cost effectiveness compared to traditional breeding methods or transgenic approaches in relation to increasing plant tolerance to abiotic stresses. Quercetin is a strong antioxidant among phenolic compounds, and it plays a physiological and biochemical role in plants. As such, the aim of this research was to assess the effect of an aqueous solution of a quercetin derivative with potassium, applied in various concentrations (0.5%, 1.0%, 3.0% and 5.0%), on the efficiency of the photosynthetic apparatus and biochemical properties of maize. Among the tested variants, compared to the control, the most stimulating effect on the course of physiological processes (PN, gs, ci, CCI, Fv/Fm, Fv/F0, PI) in maize leaves was found in 3.0 and 5.0% aqueous solutions of the quercetin derivative. The highest total antioxidant capacity and total content of polyphenolic compounds were found for plants sprayed with 5.0% quercetin derivative solution; therefore, in this study, the optimal concentration could not be clearly selected.
Collapse
Affiliation(s)
- Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (M.J.-P.); (J.B.)
| | - Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (M.J.-P.); (J.B.)
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Jan Buczek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland; (M.J.-P.); (J.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
5
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
6
|
Silva do Nascimento E, Caju de Oliveira JM, Jocelino Gomes de Lacerda JT, Montenegro SB, Caetano-Silva ME, Dias M, Mendes MA, Juliano MA, Gadelha TS, Bertoldo Pacheco MT, Alberto de Almeida Gadelha C. Yam (Dioscorea cayennensis) protein concentrate: Production, characterization and in vitro evaluation of digestibility. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model. Int J Biol Macromol 2020; 166:641-653. [PMID: 33137391 DOI: 10.1016/j.ijbiomac.2020.10.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
The antioxidant role of sulfite reductase (SiR) derived from Arthrospira platensis (Ap) was identified through a short peptide, TL15. The study showed that the expression of ApSiR was highly expressed on day ten due to sulfur deprived stress in Ap culture. TL15 peptide exhibited strong antioxidant activity when evaluated using antioxidant assays in a concentration ranging from 7.8 and 125 μM. Further, the cytotoxicity of TL15 peptide was investigated, even at the higher concentration (250 μM), TL15 did not exhibit any toxicity, when tested in vitro using human leucocytes. Moreover, a potential reduction in reactive oxygen species (ROS) production was observed due to the treatment of TL15 peptide (>15.6 μM) to H2O2 exposed leucocytes. For the in vivo assessment of TL15 toxicity and antioxidant ability, experiments were performed in zebrafish (Danio rerio) larvae to analyse the developmental toxicity of TL15 peptide. Results showed that, exposure to TL15 peptide in tested concentrations ranging from 10, 20, 40, and 80 μM, did not affect the development and physiological parameters of the zebrafish embryo/larvae such as morphology, survival, hatching and heart rate. Fluorescent assay was performed using DCFH-DA (2,7-dichlorodihydrofluorescein diacetate) to examine the production of intracellular reactive oxygen species (ROS) in zebrafish treated with TL15 peptide during the embryo-larval stages. Fluorescent images showed that pre-treatment with TL15 peptide to attenuate the H2O2 induced ROS levels in the zebrafish larvae in a dose-dependent manner. Further to uncover the underlying biochemical and antioxidant mechanism, the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) levels were studied in zebrafish larvae. TL15 pre-treated groups showed enhanced antioxidant enzyme activity, while the hydrogen peroxide (H2O2) exposed larvae showed significantly diminished activity. Overall results from the study revealed that, TL15 act as a potential antioxidant molecule with dose-specific antioxidant property. Thus, TL15 peptide could be an effective and promising source for biopharmaceutical applications.
Collapse
|
8
|
Tomé Constantino AB, Garcia-Rojas EE. Modifications of physicochemical and functional properties of amaranth protein isolate (Amaranthus cruentus BRS Alegria) treated with high-intensity ultrasound. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Influence of the Maturity Stage on the Phytochemical Composition and the Antioxidant Activity of Four Andean Blackberry Cultivars ( Rubus glaucus Benth) from Ecuador. PLANTS 2020; 9:plants9081027. [PMID: 32823664 PMCID: PMC7464621 DOI: 10.3390/plants9081027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Andean blackberries (Rubus glaucus Benth) are fruits rich in phytocomponents with high antioxidant activity. In this work, the changes in the total polyphenol content (TPC), the total flavonoid content (TFC), and the total anthocyanin content (TAC) of four blackberry varieties at three maturity stages (E1-25%, E2-50%, and E3-100%) were measured. The antioxidant activity (AA) was evaluated using the 2,2’azinobis-(3-ethylbenzthiazolin 6-sulphonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods. TPC and TFC content decreased with the increase in the maturity stage. The blackberry Brazos cultivar presented TPC values of 51.26, 38.16, and 31.59 mg of gallic acid equivalents (GAE)/g dry weight (DW) at E1, E2, and E3, respectively. The TAC and soluble solids increased with the increase in the maturity stage of the fruits. The Andimora variety at E3 presented a high TPC content, and the Colombiana variety presented a high TFC content. The blackberry Colombiana cultivar presented TAC values of 1.40, 2.95, and 12.26 mg cy-3-glu/100g DW at E1, E2, and E3, respectively. The blackberry Colombiana cultivar presented a high AA value at 1278.63 µmol TE/g DW according to the ABTS method and 1284.55 µmol TE/g DW according to the FRAP method. The TPC and TFC showed a high correlation with the AA according to the ABTS and the FRAP methods. The Pearson correlation between the TFC and AA/ABTS has a value of r = 0.92. The TFC and AA/FRAP present a value of r = 0.94.
Collapse
|
10
|
Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, Angós I, Carrillo W. Analysis of Environmental Conditions Effect in the Phytochemical Composition of Potato ( Solanum tuberosum) Cultivars. PLANTS 2020; 9:plants9070815. [PMID: 32610590 PMCID: PMC7412447 DOI: 10.3390/plants9070815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Crop productivity and food quality are affected by environmental conditions. The objective of this work was to evaluate the effect of the environment on the concentration of phytochemical components in several potato (Solanum tuberosum) cultivars. The content of vitamin C (ascorbic acid, AA), the total carotenoids content (TCC), the total polyphenols content (TPC), and the total anthocyanins content (TAC) of 11 potatoes varieties grown in Ecuador (Cutuglahua, Pujilí, and Pilahuín) was measured by the spectrophotometric method. The antioxidant capacity (AC) of potato cultivars was evaluated by the ABTS method. The AA concentration ranged between 12.67 to 39.49 mg/100g fresh weight (FW), the TCC ranged between 50.00 and 1043.50 μg/100g FW, the TPC ranged between 0.41 and 3.25 g of gallic acid equivalents (GAE)/kg dry weight (DW), the TAC ranged between 2.74 and 172.53 μg/g FW and finally the AC ranged between 36.80 and 789.19 μg of trolox equivalents (TE)/g FW. Genotypes (G), location (L), and interaction (G x L) were significant at p < 0.01. The genotype (G) showed a greater variation in the phytochemical contents. AA and TPC showed the highest correlation with the AC. A selection of genotypes with these characteristics can be used to develop germplasms with a high AC.
Collapse
Affiliation(s)
- Iván Samaniego
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Susana Espin
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Xavier Cuesta
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Verónica Arias
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Armando Rubio
- Department of Nutrition and Quality, National Institute of Agricultural Research (INIAP), Panamericana Sur Km. 1, Mejia 170516, Ecuador; (I.S.); (S.E.); (X.C.); (V.A.); (A.R.)
| | - Wilma Llerena
- Facultad de Ciencias Pecuarias, Ingeniería en Alimentos, Universidad Técnica Estatal de Quevedo, Km 7 1/2 vía Quevedo-El Empalme, Los Ríos 120313, Ecuador;
| | - Ignacio Angós
- Departamento de Agronomía, Biotecnología y Alimentación, Edificio Los Olivos, Campus Arrosadia, Universidad Pública de Navarra (UPNA), Pamplona 31006, Espana;
| | - Wilman Carrillo
- Department of Research, Universidad Técnica de Babahoyo, Av. Universitaria Km 21/2 Av. Montalvo., Babahoyo 120301, Ecuador
- Correspondence: ; Tel.: +593-980288016
| |
Collapse
|
11
|
Boeri P, Piñuel L, Dalzotto D, Monasterio R, Fontana A, Sharry S, Barrio DA, Carrillo W. Argentine Patagonia barberry chemical composition and evaluation of its antioxidant capacity. J Food Biochem 2020; 44:e13254. [PMID: 32346894 DOI: 10.1111/jfbc.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023]
Abstract
An important portion of vitamins, minerals and polyphenols components in human diet are captured from fruit consumption. Argentinean Patagonia Berberis microphylla was characterized with the phenolic content, the proximate composition and the identification and quantification of anthocyanins, not-anthocyanins and proteins. The antioxidant capacity of berberis ethanolic extracts (EB) was determined by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. EB was used to reduce production of reactive substances species (ROS) in zebrafish. EB presented a total polyphenols content of 1,035.03 mg GAE/100 g fresh weight (FW). EB presented an ABTS value of 116.25 ± 17 μmol TE/g FW. EB presented a DPPH value of 137.80 ± 1.90 μmol TE/g FW. EB was able of reducing the ROS in zebrafish. Berberies Protein Isolate (BPI) presented proteins with bands from 15 to 62 kDa. BPI presented an ABTS value of 593.11 ± 8.60 μmol TE/g. The BPI duodenal digest presented a value of 641.07 ± 12.60 μmol TE/g digests. PRACTICAL APPLICATIONS: The practical applications of the present study are to increase scientific knowledge for consumers about the quality and benefits of the consumption of the native fruit (Berberis microphylla) from the Patagonia region of Argentine. This work describes the protein profile of berberies, their digestibility and their antioxidant activity. This study allows to better understand the phytonutrients that make up this fruit. Future studies may identify the peptides present in hydrolyzates. The bio-compounds of this fruit could be used as functional ingredients by the food industry for different purposes.
Collapse
Affiliation(s)
- Patricia Boeri
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Lucrecia Piñuel
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | | | - Romina Monasterio
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Ariel Fontana
- Institute of Agricultural Biology of Mendoza (IBAM), UNCuyo-CONICET, Mendoza, Argentina
| | - Sandra Sharry
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,Wood Research Laboratory (LIMAD), Faculty of Agricultural and Forestry Sciences, National University of La Plata, La Plata, Argentina
| | - Daniel Alejandro Barrio
- Universidad Nacional de Rio Negro, Rio Negro Viedma, Argentina.,CIT-Rio Negro -CONICET, Viedma, Río Negro, Argentina
| | - Wilman Carrillo
- Faculty of Agricultural Sciences, Technical University of Babahoyo, Babahoyo, Ecuador
| |
Collapse
|
12
|
|
13
|
Chmelík Z, Šnejdrlová M, Vrablík M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr Res 2019; 72:36-45. [PMID: 31757630 DOI: 10.1016/j.nutres.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/25/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
The aim of this review was to summarize data regarding amaranth as a potential component of lifestyle modification to improve cardiovascular risk profiles by modifying cardiovascular risk factors such as cholesterol, diabetes, and hypertension. PubMed was searched for appropriate articles. The main inclusion criteria for articles were as follows: interventions with amaranth; conducted in humans or animals or in vitro; and reported serum lipids and lipoprotein levels, and antidiabetic, antihypertensive, and antioxidant abilities. The outcome measures were changes in serum lipids and the presence of antidiabetic, antihypertensive, and antioxidant activity. A total of 33 articles were included herein. Regarding hypolipidemic activity, most studies investigated the effect of intervention with amaranth in animals, and fewer studies were performed in humans. Most studies in animal models demonstrated the ability of amaranth to decrease total cholesterol and low-density lipoprotein cholesterol. Pilot studies in humans were not convincing regarding amaranth's lipid-lowering activity. Based on this search, it is not clear which constituents are potentially responsible for the hypocholesterolemic effect of amaranth. Some authors tend to think that squalene can play a role in this effect, whereas others suggest that different components of amaranth are of greater importance (eg, sterols, oil fractions rich in fatty acids, proteins, amino acids, or fiber) for its hypocholesterolemic effect. It is possible that several constituents are jointly responsible for this action. Regarding the antidiabetic, antihypertensive, and antioxidant activities, most studies were performed in vitro and showed good potential for all three biological effects. Future research should focus on clarifying the effect of amaranth on high-density lipoprotein cholesterol, identifying the constituents responsible for these beneficial effects, and providing more data regarding its use in humans, ideally using randomized controlled trials. The antidiabetic, antihypertensive, and antioxidant activities found in vitro should be confirmed further in animal or human models.
Collapse
Affiliation(s)
- Zdeněk Chmelík
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| | - Michaela Šnejdrlová
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| | - Michal Vrablík
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 1, 128 08, Prague 2, Czech Republic.
| |
Collapse
|
14
|
Thakur V, Singh A, Joshi N, Mishra N. Spray dried formulation of mesalamine embedded with probiotic biomass for the treatment of ulcerative colitis: in-vitro and in-vivo studies. Drug Dev Ind Pharm 2019; 45:1807-1820. [PMID: 31489829 DOI: 10.1080/03639045.2019.1665059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study is using the targeted approach and anti-inflammatory action of the probiotic biomass to lessen the side effects of therapeutic agents of ulcerative colitis. The aim of the present study is to prepare mesalamine loaded eudragit S-100 with probiotic microparticles by spray drying method. The in-vitro release of the optimized formulation was 90.55 ± 2.42 in 24 hr, which display controlled drug release of mesalamine at a particular region. Mesalamine loaded eudragit S-100 with probiotic microparticles (F12) presented average particle size of 4.91 µm. The statistical analysis was done by one way ANOVA and then comparison test of Bonferroni was done and p values <.05 were considered as significant. The effects of spray dried microparticles over inflamed Caco-2 cell were also evaluated by determining the concentration of IL-8. From in-vivo study it was seen that pretreatment of mesalamine with probiotic prevents DNBS (Dinitrobenzenesulfonic acid) induced colitis in rats and represents protective action against ulcerative colitis because of its antioxidant and anti-inflammatory actions. The results give the foundation for a combination of targeted approach along with the anti-inflammatory potential of the probiotic which might help to decrease the problems which are seen with the traditional cure and management of ulcerative colitis.
Collapse
Affiliation(s)
| | | | - Nabin Joshi
- ISF College of Pharmacy , Moga , Punjab , India
| | - Neeraj Mishra
- ISF College of Pharmacy , Moga , Punjab , India.,Amity Institute of Pharmacy, Amity University Madhya Pradesh , Gwalior , Madhya Pradesh , India
| |
Collapse
|
15
|
Piñuel L, Boeri P, Zubillaga F, Barrio DA, Torreta J, Cruz A, Vásquez G, Pinto A, Carrillo W. Production of White, Red and Black Quinoa ( Chenopodium quinoa Willd Var. Real) Protein Isolates and Its Hydrolysates in Germinated and Non-Germinated Quinoa Samples and Antioxidant Activity Evaluation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E257. [PMID: 31366118 PMCID: PMC6724106 DOI: 10.3390/plants8080257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Red, black and white seeds quinoa were germinated at 28 °C during 24 (G1), 48 and 72 h (G3). Red quinoa presented a higher percentage of germination with a value of 46% of germination at 72 h. Quinoa protein isolate (QPI) was obtained by alkaline extraction (pH 8.0) followed by an isoelectric precipitation (pH 4.5) from white, red and black quinoa seeds, germinated QPI-G1 or QPI-G3 and non-germinated QPI-NG, Chenopodium quinoa Willd var. Real. QPI-G1, QPI-G3 and QPI-NG were subject to a simulated gastric digestion (DG) and in vitro duodenal digestion (DD). The antioxidant activity was evaluated using the 1, 1-diphenyl-2-picryl hydrazyl (DPPH), azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) methods. Gastric and duodenal digest of QPI-NG and QPI-G1 and QPI-G3 from white, red and black quinoa presented antioxidant activity. QPI-G1-DD of white quinoa presented the highest antioxidant activity with a DPPH value of 167.98 µmoL TE/g of digest, QPI-G1-DD of red quinoa with an ABTS value of 204.86 µmoL TE/g of digest and QPI-G1-DD of black quinoa with an ORAC value of 401.42 µmoL TE/g of digest. QPI-G3-DD of white quinoa presented higher antioxidant activity with a DPPH value of 186.28 µmoL TE/g of sample, QPI-G3-DD of red quinoa with an ABTS value of 144.06 µmoL TE/g of digest and QPI-G3-DD of black quinoa with an ORAC value of 395.14 µmoL TE/g of digest. The inhibition of reactive oxygen species (ROS) production in the zebrafish embryo model (Danio rerio) was evaluated. Protein profiles of QPI from white, red and black from germinated quinoa and non-germinated quinoa were similar with proteins between 10 kDa to 100 kDa with the presence of globulins 11S and 7S and 2S albumins.
Collapse
Affiliation(s)
- Lucrecia Piñuel
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n, Rio Negro Viedma CP 8500, Argentina
| | - Patricia Boeri
- Research Department, Faculty of Health Sciences, Technical University of Babahoyo. Av. Universitaria Km 21/2 Av. Montalvo. Babahoyo CP 120301, Ecuador
| | - Fanny Zubillaga
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n, Rio Negro Viedma CP 8500, Argentina
| | - Daniel Alejandro Barrio
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n, Rio Negro Viedma CP 8500, Argentina
| | - Joaquin Torreta
- CIT-RIO NEGRO Sede Atlántica, Universidad Nacional de Rio Negro (UNRN-CONICET), Don Bosco y Leloir s/n, Rio Negro Viedma CP 8500, Argentina
| | - Andrea Cruz
- Faculty of Mechanical Engineering and Production Sciences, ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador
| | - Grace Vásquez
- Faculty of Mechanical Engineering and Production Sciences, ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador
| | - Adelita Pinto
- Research Department, Faculty of Health Sciences, Technical University of Babahoyo. Av. Universitaria Km 21/2 Av. Montalvo. Babahoyo CP 120301, Ecuador
| | - Wilman Carrillo
- Research Department, Faculty of Health Sciences, Technical University of Babahoyo. Av. Universitaria Km 21/2 Av. Montalvo. Babahoyo CP 120301, Ecuador.
| |
Collapse
|