1
|
Kalpana P, Yasobant S, Saxena D, Schreiber C. Microbial Contamination and Antibiotic Resistance in Fresh Produce and Agro-Ecosystems in South Asia-A Systematic Review. Microorganisms 2024; 12:2267. [PMID: 39597656 PMCID: PMC11596128 DOI: 10.3390/microorganisms12112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Fresh produce prone to microbial contamination is a potential reservoir for antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), posing challenges to food safety and public health. This systematic review aims to comprehensively assess the prevalence of bacterial pathogens and the incidence of ARB/ARGs in fresh produce and agro-ecosystems across South Asia. Twenty-two relevant studies published between 2012 and 2022 from three major scientific databases and the grey literature were identified. The results revealed a wide occurrence of microbial contamination in various types of fresh produce across South Asia, with a predominance of E. coli (16/22), Salmonella spp. (13/22), Staphylococcus spp. (5/22), and Klebsiella spp. (4/22). The agro-ecosystem serves as a complex interface for microbial interactions; studies have reported the prevalence of E. coli (1/4), Salmonella spp. (1/4) and Listeria monocytogenes (1/4) in farm environment samples. A concerning prevalence of ARB has been reported, with resistance to multiple classes of antibiotics. The presence of ARGs in fresh produce underscores the potential for gene transfer and the emergence of resistant pathogens. To conclude, our review provides insights into the requirements of enhanced surveillance, collaborative efforts, implementation of good agricultural practices, and public awareness for food safety and safeguarding public health in the region.
Collapse
Affiliation(s)
- Pachillu Kalpana
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany;
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
| | - Sandul Yasobant
- School of Epidemiology & Public Health, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha 442107, Maharashtra, India
- Department of Public Health Science, Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Global Health, Institute for Hygiene and Public Health (IHPH), University Hospital Bonn, 53127 Bonn, Germany
| | - Deepak Saxena
- School of Epidemiology & Public Health, Datta Meghe Institute of Higher Education and Research (DMIHER), Wardha 442107, Maharashtra, India
- Department of Public Health Science, Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
- Centre for One Health Education, Research & Development (COHERD), Indian Institute of Public Health Gandhinagar (IIPHG), Gandhinagar 382042, Gujarat, India
| | - Christiane Schreiber
- GeoHealth Centre, Institute for Hygiene and Public Health (IHPH), University Hospital Bonn, 53127 Bonn, Germany;
| |
Collapse
|
2
|
Duflos R, Vailleau F, Roux F. Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300210. [PMID: 39552649 PMCID: PMC11561803 DOI: 10.1002/ggn2.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 11/19/2024]
Abstract
The social movement to reduce reliance on pesticides and synthesized fertilizers and the growing global demand for sustainable food supplies require the development of eco-friendly and sustainable agricultural practices. In line, plant growth-promoting bacteria (PGPB) can participate in creating innovative agroecological systems. While the effectiveness of PGPB is highly influenced by abiotic conditions and microbe-microbe interactions, beneficial plant-PGPB interactions can also highly depend on both host and PGPB genotype. Here, the state of the art on the extent of natural genetic variation of plant-PGPB interactions and the underlying genetic architecture, in particular in Arabidopsis thaliana is reviewed. Extensive natural plant genetic variation in response to PGPB is associated with a polygenic architecture and genetic pathways rarely mentioned as being involved in the response to PGPB. To date, natural genetic variation within PGPB is little explored, which may in turn allow the identification of new genetic pathways underlying benefits to plants. Accordingly, several avenues to better understand the genomic and molecular landscape of plant-PGPB interactions are introduced. Finally, the need for establishing thorough functional studies of candidate genes underlying Quantitative Trait Loci and estimating the extent of genotype-by-genotype-by-environment interactions within the context of realistic (agro-)ecological conditions is advocated.
Collapse
Affiliation(s)
- Rémi Duflos
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| | | | - Fabrice Roux
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| |
Collapse
|
3
|
Guardado-Fierros BG, Tuesta-Popolizio DA, Lorenzo-Santiago MA, Rodriguez-Campos J, Contreras-Ramos SM. Comparative study between Salkowski reagent and chromatographic method for auxins quantification from bacterial production. FRONTIERS IN PLANT SCIENCE 2024; 15:1378079. [PMID: 38947947 PMCID: PMC11212217 DOI: 10.3389/fpls.2024.1378079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Introduction The Salkowski reagent method is a colorimetric technique used to determine auxin production, specifically as indole-3-acetic acid (IAA). It was developed to determine indoles rapidly; however, it does not follow Beer's law at high concentrations of IAA. Thus, there could be an overestimation of IAA with the Salkowski technique due to the detection of other indole compounds. Methods This study aims to compare the Salkowski colorimetric method versus a chromatographic method to evidence the imprecision or overestimation obtained when auxins, such as indole-acetic acid (IAA), are determined as traits from promoting growth plant bacteria (PGPB), using ten different strains from three different isolation sources. The analysis used the same bacterial culture to compare the Salkowski colorimetric and chromatographic results. Each bacterium was cultivated in the modified TSA without or with tryptophan for 96 h. The same supernatant culture was used in both methods: Salkowski reagent and ultra-performance liquid chromatography coupled with a Mass Spectrometer (LC-MS/MS). Results The first method indicated 5.4 to 27.4 mg L-1 without tryptophan in ten evaluated strains. When tryptophan was used as an inductor of auxin production, an increase was observed with an interval from 4.4 to 160 mg L-1. The principal auxin produced by all strains was IAA from that evaluated by the LC-MS/MS method, with significantly higher concentration with tryptophan addition than without. Strains belonging to the Kocuria genus were highlighted by high IAA production. The indole-3-propionic acid (IPA) was detected in all the bacterial cultures without tryptophan and only in K. turfanensis As05 with tryptophan, while it was not detected in other strains. In addition, indole-3-butyric acid (IBA) was detected at trace levels (13-16 µg L-1). Conclusions The Salkowski reagent overestimates the IAA concentration with an interval of 41-1042 folds without tryptophan and 7-16330 folds with tryptophan as inductor. In future works, it will be necessary to determine IAA or other auxins using more suitable sensitive techniques and methodologies.
Collapse
Affiliation(s)
- Beatriz G. Guardado-Fierros
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Diego A. Tuesta-Popolizio
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Miguel A. Lorenzo-Santiago
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Silvia M. Contreras-Ramos
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Chauviat A, Meyer T, Favre-Bonté S. Versatility of Stenotrophomonas maltophilia: Ecological roles of RND efflux pumps. Heliyon 2023; 9:e14639. [PMID: 37089375 PMCID: PMC10113797 DOI: 10.1016/j.heliyon.2023.e14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
S. maltophilia is a widely distributed bacterium found in natural, anthropized and clinical environments. The genome of this opportunistic pathogen of environmental origin includes a large number of genes encoding RND efflux pumps independently of the clinical or environmental origin of the strains. These pumps have been historically associated with the uptake of antibiotics and clinically relevant molecules because they confer resistance to many antibiotics. However, considering the environmental origin of S. maltophilia, the ecological role of these pumps needs to be clarified. RND efflux systems are highly conserved within bacteria and encountered both in pathogenic and non-pathogenic species. Moreover, their evolutionary origin, conservation and multiple copies in bacterial genomes suggest a primordial role in cellular functions and environmental adaptation. This review is aimed at elucidating the ecological role of S. maltophilia RND efflux pumps in the environmental context and providing an exhaustive description of the environmental niches of S. maltophilia. By looking at the substrates and functions of the pumps, we propose different involvements and roles according to the adaptation of the bacterium to various niches. We highlight that i°) regulatory mechanisms and inducer molecules help to understand the conditions leading to their expression, and ii°) association and functional redundancy of RND pumps and other efflux systems demonstrate their complex role within S. maltophilia cells. These observations emphasize that RND efflux pumps play a role in the versatility of S. maltophilia.
Collapse
|
5
|
Zhao L, Jia L, Ma B, Zhong W, Huang Y, Duan F. Heat-resistant bacteria contamination investigation in Chinese soybean curd industrial processing using high-throughput gene sequencing and MALDI-TOF-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
7
|
Biopolymer production by halotolerant bacteria isolated from Caatinga biome. Braz J Microbiol 2021; 52:547-559. [PMID: 33491139 DOI: 10.1007/s42770-021-00426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Saline environments are extreme habitats with a high diversity of microorganisms source of a myriad of biomolecules. These microorganisms are assigned as extremophiles recognized to be producers of new natural compounds, which can be synthesized by helping to survive under harshness and extreme conditions. In Brazil, in the saline and semi-arid region of Areia Branca (Caatinga biome), halotolerant bacteria (able to growth at high NaCl concentrations) were isolated from rhizosphere of native plants Blutaparon portulacoides and Spergularia sp. and their biopolymer production was studied. A total of 25 bacterial isolates were identified at genus level based on 16S rRNA gene sequence analysis. Isolates were mainly Gram-positive bacteria from Bacillaceae, Staphylococcaceae, Microbacteriaceae, and Bacillales XII incertae sedis families, affiliates to Bacillus, Staphylococcus, Curtobacterium, and Exiguobacterium genera, respectively. One of the Gram-negative isolates was identified as member of the Pseudomonadaceae family, genus Pseudomonas. All the identified strains were halotolerant bacteria with optimum growth at 0.6-2.0 M salt concentrations. Assays for biopolymer production showed that the halotolerant strains are a rich source of compounds as polyhydroxyalkanoates (PHA), biodegradable biopolymer, such as poly(3-hydroxybutyrate) (PHB) produced from low-cost substrates, and exopolysaccharides (EPS), such as hyaluronic acid (HA), metabolite of great interest to the cosmetic and pharmaceutical industry. Also, eight bacterial EPS extracts showed immunostimulatory activity, promising results that can be used in biomedical applications. Overall, our findings demonstrate that these biomolecules can be produced in culture medium with 0.6-2.0 M NaCl concentrations, relevant feature to avoid costly production processes. This is the first report of biopolymer-producing bacteria from a saline region of Caatinga biome that showed important biological activities.
Collapse
|
8
|
Bacterial Microbiota Isolated from Cysts of Globodera rostochiensis (Nematoda: Heteroderidae). PLANTS 2020; 9:plants9091146. [PMID: 32899615 PMCID: PMC7570271 DOI: 10.3390/plants9091146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
The potato cyst nematode (PCN) Globodera rostochiensis is a plant parasite of potato classified into a group of quarantine organisms causing high economic losses worldwide. Due to the long persistence of the parasite in soil, cysts harbor numerous bacteria whose presence can lead to cyst death and population decline. The cysts of G. rostochiensis found in two potato fields were used as a source of bacteria. The universal procedure was applied to extract DNA from bacteria which was then sequenced with 16S primers. The aims of the study were to identify bacterial microbiota associated with the PCN populations and to infer their phylogenetic relationships based on the maximum likelihood and Bayesian phylogeny of the 16S sequences. In addition, the impact of the most significant climate and edaphic factors on bacterial diversity were evaluated. Regarding the higher taxonomy, our results indicate that the prevalent bacterial classes were Bacilli, Actinobacteria and Alphaproteobacteria. Phylogenetic analyses clustered Brevibacterium frigoritolerans within the family Bacillaceae, confirming its recent reclassification. Long-term climate factors, such as air temperature, insolation hours, humidity and precipitation, as well as the content of soil organic matter, affected the bacterial diversity. The ability of cyst nematodes to persist in soil for a long time qualifies them as a significant natural source to explore the soil bacterial microbiota.
Collapse
|
9
|
Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA. Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS One 2020; 15:e0232860. [PMID: 32645001 PMCID: PMC7347142 DOI: 10.1371/journal.pone.0232860] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
Collapse
Affiliation(s)
- Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurzulaikha Nadiah Zulkifli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sim Choon Cheak
- Research and Development Center, Sime Darby Plantation Research Sdn. Bhd., Carey Island, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail: ,
| |
Collapse
|
10
|
Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA. Seed biopriming with P- and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS One 2020; 15:e0232860. [PMID: 32645001 PMCID: PMC7347142 DOI: 10.1371/journal.pone.0232860,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 05/28/2023] Open
Abstract
Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
Collapse
Affiliation(s)
- Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurzulaikha Nadiah Zulkifli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sim Choon Cheak
- Research and Development Center, Sime Darby Plantation Research Sdn. Bhd., Carey Island, Selangor, Malaysia
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|