1
|
Xie B, Zhao Z, Wang X, Wang Q, Yuan X, Guo C, Xu L. Exogenous protectants alleviate ozone stress in Trifolium repens: Impacts on plant growth and endophytic fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109059. [PMID: 39178802 DOI: 10.1016/j.plaphy.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Industrialization-driven surface ozone (O3) pollution significantly impairs plant growth. This study evaluates the effectiveness of exogenous protectants [3 mg L⁻1 abscisic acid (ABA), 400 mg L⁻1 ethylenediurea (EDU), and 80 mg L⁻1 spermidine (Spd)] on Trifolium repens subjected to O3 stress in open-top chambers, focusing on plant growth and dynamics of culturable endophytic fungal communities. Results indicate that O3 exposure adversely affects photosynthesis, reducing root biomass and altering root structure, which further impacts the ability of plant to absorb essential nutrients such as potassium (K), magnesium (Mg), and zinc (Zn). Conversely, the application of ABA, EDU, and Spd significantly enhanced total biomass and chlorophyll content in T. repens. Specifically, ABA and Spd significantly improved root length, root surface area, and root volume, while EDU effectively reduced leaves' malondialdehyde levels, indicating decreased oxidative stress. Moreover, ABA and Spd treatments significantly increased leaf endophytic fungal diversity, while root fungal abundance declined. The relative abundance of Alternaria in leaves was substantially reduced by these treatments, which correlated with enhanced chlorophyll content and photosynthesis. Concurrently, EDU and Spd treatments increased the abundance of Plectosphaerella, enhance the absorption of K, Ca, and Mg. In roots, ABA treatment increased the abundance of Paecilomyces, while Spd treatment enhanced the presence of Stemphylium, linked to improved nitrogen (N), phosphorus (P), and K uptake. These findings suggest that specific symbiotic fungi mitigate O3-induced stress by enhancing nutrient absorption, promoting growth. This study highlights the potential of exogenous protectants to enhance plant resilience against O3 pollution through modulating interactions with endophytic fungal communities.
Collapse
Affiliation(s)
- Bing Xie
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Zipeng Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaona Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Qi Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiangyang Yuan
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Chang Guo
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| | - Lang Xu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
2
|
Mashaheet AM, Burkey KO, Marshall DS. The interaction of O 3 and CO 2 concentration, exposure timing and duration on stem rust severity on winter wheat variety 'Coker 9553'. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122122. [PMID: 37399937 DOI: 10.1016/j.envpol.2023.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Wheat rusts, elevated ozone (O3), and carbon dioxide (CO2) are simultaneously impacting wheat production worldwide, but their interactions are not well understood. This study investigated whether near-ambient O3 is suppressive or conducive to stem rust (Sr) of wheat, considering the interactions with ambient and elevated CO2. Winter wheat variety 'Coker 9553' (Sr-susceptible; O3 sensitive) was inoculated with Sr (race QFCSC) following pre-treatment with four different concentrations of O3 (CF, 50, 70, and 90 ppbv) at ambient CO2 levels. Gas treatments were continued during the development of disease symptoms. Disease severity, measured as percent sporulation area (PSA), significantly increased relative to the CF control only under near-ambient O3 conditions (50 ppbv) in the absence of O3-induced foliar injury. Disease symptoms at higher O3 exposures (70 and 90 ppbv) were similar to or less than the CF control. When Coker 9553 was inoculated with Sr while exposed to CO2 (400; 570 ppmv) and O3 (CF; 50 ppbv) in four different combinations, and seven combinations of exposure timing and duration, PSA significantly increased only under continuous treatment with O3 for six weeks or pre-inoculation treatment for three weeks, suggesting that O3-predisposes wheat to the disease rather than enhancing disease post-inoculation. O3 singly and in combination with CO2 increased PSA on flag leaves of adult Coker 9553 plants while elevated CO2 alone had little effect on PSA. These findings show that sub-symptomatic O3 conditions are conducive to stem rust, contradicting the current consensus that biotrophic pathogens are suppressed by elevated O3. This suggests that sub-symptomatic O3 stress may enhance rust diseases in wheat-growing regions.
Collapse
Affiliation(s)
- Alsayed M Mashaheet
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA; Department of Plant Pathology, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Kent O Burkey
- USDA-ARS, Plant Science Research Unit, Raleigh, NC, USA.
| | | |
Collapse
|
3
|
Ansari N, Yadav DS, Agrawal M, Agrawal SB. The impact of elevated ozone on growth, secondary metabolites, production of reactive oxygen species and antioxidant response in an anti-diabetic plant Costus pictus. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:597-610. [PMID: 33648624 DOI: 10.1071/fp20324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) is a global air pollutant that causes deleterious effect to the plants. The present objective was to investigate the growth response, foliar injury, reactive oxygen species (ROS) accumulation and metabolites production in Costus pictus D. Don (insulin plant) at two developmental stages under ambient O3 (AO) and ambient + 20 ppb O3 (EO) using the open-top chambers (OTCs). A significant reduction in leaf area and total biomass was observed under EO as compared with AO. EO induced ROS (.O2- and H2O2) and lipid peroxidation led to more significant foliar injury and solute leakage. Image obtained from the fluorescence microscope and biochemical estimations reflected high levels of ROS under EO. A differential response in flavonoids and anthocyanin content, ascorbic acid, and antioxidative enzymes such as catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) has been observed with the growth stages of C. pictus plant. EO exposure negatively affected thiols and protein contents at all the growth stages. Secondary metabolites (tannins, lignin, saponins and alkaloids) were increased in both leaves and rhizomes due to EO, whereas phytosterols were induced only in rhizomes. Apart from other metabolites, the key bioactive compound (corosolic acid) showed its synthesis to be stimulated under EO at later growth stage. The study concludes that O3 is a potent stimulating factor for changing the levels of secondary metabolites and antioxidants in an antidiabetic C. pictus plants as it can alter its medicinal properties.
Collapse
Affiliation(s)
- Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh S Yadav
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; and Corresponding author.
| |
Collapse
|
4
|
Saitanis CJ, Agathokleous E. Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next? CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 19:100215. [PMID: 33073070 PMCID: PMC7553877 DOI: 10.1016/j.coesh.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.
Collapse
Affiliation(s)
- Costas J Saitanis
- Agricultural University of Athens, Lab of Ecology and Environmental Sciences, 75 Iera Odos Str., TK 11855, Athens, Greece
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Begum H, Alam MS, Feng Y, Koua P, Ashrafuzzaman M, Shrestha A, Kamruzzaman M, Dadshani S, Ballvora A, Naz AA, Frei M. Genetic dissection of bread wheat diversity and identification of adaptive loci in response to elevated tropospheric ozone. PLANT, CELL & ENVIRONMENT 2020; 43:2650-2665. [PMID: 32744331 DOI: 10.1111/pce.13864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone affects the performance of important cereal crops thus threatening global food security. In this study, genetic variation of wheat regarding its physiological and yield responses to ozone was explored by exposing a diversity panel of 150 wheat genotypes to elevated ozone and control conditions throughout the growing season. Differential responses to ozone were observed for foliar symptom formation quantified as leaf bronzing score (LBS), vegetation indices and yield components. Vegetation indices representing the carotenoid to chlorophyll pigment ratio (such as Lic2) were particularly ozone-responsive and were thus considered suitable for the non-invasive diagnosing of ozone stress. Genetic variation in ozone-responsive traits was dissected by a genome-wide association study (GWAS). Significant marker-trait associations were identified for LBS on chromosome 5A and for vegetation indices (NDVI and Lic2) on chromosomes 6B and 6D. Analysis of linkage disequilibrium (LD) in these chromosomal regions revealed distinct LD blocks containing genes with a putative function in plant redox biology such as cytochrome P450 proteins and peroxidases. This study gives novel insight into the natural genetic variation in wheat ozone response, and lays the foundation for the molecular breeding of tolerant wheat varieties.
Collapse
Affiliation(s)
- Hasina Begum
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Muhammad Shahedul Alam
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Yanru Feng
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Patrice Koua
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Asis Shrestha
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| |
Collapse
|