1
|
Mai H, Qin T, Wei H, Yu Z, Pang G, Liang Z, Ni J, Yang H, Tang H, Xiao L, Liu H, Liu T. Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:833-847. [PMID: 37965680 PMCID: PMC10955489 DOI: 10.1111/pbi.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Major polyamines include putrescine, spermidine, spermine and thermospermine, which play vital roles in growth and adaptation against environmental changes in plants. Thermospermine (T-Spm) is synthetised by ACL5. The function of ACL5 in rice is still unknown. In this study, we used a reverse genetic strategy to investigate the biological function of OsACL5. We generated several knockout mutants by pYLCRISPR/Cas9 system and overexpressing (OE) lines of OsACL5. Interestingly, the OE plants exhibited environmentally-dependent leaf rolling, smaller grains, lighter 1000-grain weight and reduction in yield per plot. The area of metaxylem vessels of roots and leaves of OE plants were significantly smaller than those of WT, which possibly caused reduction in leaf water potential, resulting in leaf rolling with rise in the environmental temperature and light intensity and decrease in humidity. Additionally, the T-Spm contents were markedly increased by over ninefold whereas the ethylene evolution was reduced in OE plants, suggesting that T-Spm signalling pathway interacts with ethylene pathway to regulate multiple agronomic characters. Moreover, the osacl5 exhibited an increase in grain length, 1000-grain weight, and yield per plot. OsACL5 may affect grain size via mediating the expression of OsDEP1, OsGS3 and OsGW2. Furthermore, haplotypes analysis indicated that OsACL5 plays a conserved function on regulating T-Spm levels during the domestication of rice. Our data demonstrated that identification of OsACL5 provides a theoretical basis for understanding the physiological mechanism of T-Spm which may play roles in triggering environmentally dependent leaf rolling; OsACL5 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Huan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiansheng Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Haiying Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Lisi Xiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
2
|
Qin R, Ma T, Cai Y, Shi X, Cheng J, Dong J, Wang C, Li S, Pan G, Guan Y, Zhang L, Yang S, Xu H, Zhao C, Sun H, Li X, Wu Y, Li J, Cui F. Characterization and fine mapping analysis of a major stable QTL qKnps-4A for kernel number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:211. [PMID: 37737910 DOI: 10.1007/s00122-023-04456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
KEY MESSAGE A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Tianhang Ma
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibiao Cai
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Xinyao Shi
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Cheng
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jizi Dong
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chenyang Wang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shihui Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Guoqing Pan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yuxiang Guan
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Zhang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Shuang Yang
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Huiyuan Xu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Chunhua Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Han Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Ximei Li
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
- Shandong Key Laboratory of Dryland Farming Technology, Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhen Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
3
|
Ebeed HT. Genome-wide analysis of polyamine biosynthesis genes in wheat reveals gene expression specificity and involvement of STRE and MYB-elements in regulating polyamines under drought. BMC Genomics 2022; 23:734. [PMID: 36309637 PMCID: PMC9618216 DOI: 10.1186/s12864-022-08946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Polyamines (PAs) are considered promising biostimulants that have diverse key roles during growth and stress responses in plants. Nevertheless, the molecular basis of these roles by PAs has not been completely realized even now, and unfortunately, the transcriptional analyses of the biosynthesis pathway in various wheat tissues have not been investigated under normal or stress conditions. In this research, the findings of genome-wide analyses of genes implicated in the PAs biosynthesis in wheat (ADC, Arginine decarboxylase; ODC, ornithine decarboxylase; AIH, agmatine iminohydrolase; NPL1, Nitrlase like protein 1; SAMDC, S-adenosylmethionine decarboxylase; SPDS, spermidine synthase; SPMS, spermine synthase and ACL5, thermospermine synthase) are shown. RESULTS In total, thirty PAs biosynthesis genes were identified. Analysis of gene structure, subcellular compartmentation and promoters were discussed. Furthermore, experimental gene expression analyses in roots, shoot axis, leaves, and spike tissues were investigated in adult wheat plants under control and drought conditions. Results revealed structural similarity within each gene family and revealed the identity of two new motifs that were conserved in SPDS, SPMS and ACL5. Analysis of the promoter elements revealed the incidence of conserved elements (STRE, CAAT-box, TATA-box, and MYB TF) in all promoters and highly conserved CREs in >80% of promoters (G-Box, ABRE, TGACG-motif, CGTCA-motif, as1, and MYC). The results of the quantification of PAs revealed higher levels of putrescine (Put) in the leaves and higher spermidine (Spd) in the other tissues. However, no spermine (Spm) was detected in the roots. Drought stress elevated Put level in the roots and the Spm in the leaves, shoots and roots, while decreased Put in spikes and elevated the total PAs levels in all tissues. Interestingly, PA biosynthesis genes showed tissue-specificity and some homoeologs of the same gene family showed differential gene expression during wheat development. Additionally, gene expression analysis showed that ODC is the Put biosynthesis path under drought stress in roots. CONCLUSION The information gained by this research offers important insights into the transcriptional regulation of PA biosynthesis in wheat that would result in more successful and consistent plant production.
Collapse
Affiliation(s)
- Heba Talat Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| |
Collapse
|
4
|
Yariuchi Y, Okamoto T, Noutoshi Y, Takahashi T. Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings. Cells 2021; 10:3283. [PMID: 34943791 PMCID: PMC8699553 DOI: 10.3390/cells10123283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
In plants, many of the enzymes in polyamine metabolism are encoded by multiple genes, whose expressions are differentially regulated under different physiological conditions. For comprehensive understanding of their regulation during the seedling growth stage, we examined the expression of polyamine metabolic genes in response to polyamines and stress-related plant hormones in Arabidopsis thaliana. While confirming previous findings such as induction of many of the genes by abscisic acid, induction of arginase genes and a copper amine oxidase gene, CuAOα3, by methyl jasmonate, that of an arginine decarboxylase gene, ADC2, and a spermine synthase gene, SPMS, by salicylic acid, and negative feedback regulation of thermospermine biosynthetic genes by thermospermine, our results showed that expressions of most of the genes are not responsive to exogenous polyamines. We thus examined expression of OsPAO6, which encodes an apoplastic polyamine oxidase and is strongly induced by polyamines in rice, by using the promoter-GUS fusion in transgenic Arabidopsis seedlings. The GUS activity was increased by treatment with methyl jasmonate but neither by polyamines nor by other plant hormones, suggesting a difference in the response to polyamines between Arabidopsis and rice. Our results provide a framework to study regulatory modules directing expression of each polyamine metabolic gene.
Collapse
Affiliation(s)
- Yusaku Yariuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| | - Takashi Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.Y.); (T.O.)
| |
Collapse
|
5
|
Sagor GHM, Simm S, Kim DW, Niitsu M, Kusano T, Berberich T. Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:577-586. [PMID: 33854285 PMCID: PMC7981342 DOI: 10.1007/s12298-021-00967-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3'-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi'ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Plant Molecular Genetics Laboratory, Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 370-0290 Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Kaszler N, Benkő P, Bernula D, Szepesi Á, Fehér A, Gémes K. Polyamine Metabolism Is Involved in the Direct Regeneration of Shoots from Arabidopsis Lateral Root Primordia. PLANTS 2021; 10:plants10020305. [PMID: 33562616 PMCID: PMC7915173 DOI: 10.3390/plants10020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Plants can be regenerated from various explants/tissues via de novo shoot meristem formation. Most of these regeneration pathways are indirect and involve callus formation. Besides plant hormones, the role of polyamines (PAs) has been implicated in these processes. Interestingly, the lateral root primordia (LRPs) of Arabidopsis can be directly converted to shoot meristems by exogenous cytokinin application. In this system, no callus formation takes place. We report that the level of PAs, especially that of spermidine (Spd), increased during meristem conversion and the application of exogenous Spd improved its efficiency. The high endogenous Spd level could be due to enhanced synthesis as indicated by the augmented relative expression of PA synthesis genes (AtADC1,2, AtSAMDC2,4, AtSPDS1,2) during the process. However, the effect of PAs on shoot meristem formation might also be dependent on their catabolism. The expression of Arabidopsis POLYAMINE OXIDASE 5 (AtPAO5) was shown to be specifically high during the process and its ectopic overexpression increased the LRP-to-shoot conversion efficiency. This was correlated with Spd accumulation in the roots and ROS accumulation in the converting LRPs. The potential ways how PAO5 may influence direct shoot organogenesis from Arabidopsis LRPs are discussed.
Collapse
Affiliation(s)
- Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Péter Benkő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Dóra Bernula
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Ágnes Szepesi
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
- Correspondence: author: (A.F.); (K.G.); Tel.: +36-62-546-962 (A.F.); +36-62-544-307 (K.G.)
| | - Katalin Gémes
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726 Szeged, Hungary; (N.K.); (P.B.); (D.B.)
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary;
- Correspondence: author: (A.F.); (K.G.); Tel.: +36-62-546-962 (A.F.); +36-62-544-307 (K.G.)
| |
Collapse
|
7
|
Abstract
Polyamines are small organic compounds found in all living organisms. According to the high degree of positive charge at physiological pH, they interact with negatively charged macromolecules, such as DNA, RNA, and proteins, and modulate their activities. In plants, polyamines, some of which are presented as a conjugated form with cinnamic acids and proteins, are involved in a variety of physiological processes. In recent years, the study of plant polyamines, such as their biosynthetic and catabolic pathways and the roles they play in cellular processes, has flourished, becoming an exciting field of research. There is accumulating evidence that polyamine oxidation, the main catabolic pathway of polyamines, may have a potential role as a source of hydrogen peroxide. The papers in this Special Issue highlight new discoveries and research in the field of plant polyamine biology. The information will help to stimulate further research and make readers aware of the link between their own work and topics related to polyamines.
Collapse
Affiliation(s)
- Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
Anwar R, Fatima S, Mattoo AK, Handa AK. Fruit Architecture in Polyamine-Rich Tomato Germplasm Is Determined via a Medley of Cell Cycle, Cell Expansion, and Fruit Shape Genes. PLANTS 2019; 8:plants8100387. [PMID: 31569586 PMCID: PMC6843802 DOI: 10.3390/plants8100387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Shape and size are important features of fruits. Studies using tomatoes expressing yeast Spermidine Synthase under either a constitutive or a fruit-ripening promoter showed obovoid fruit phenotype compared to spherical fruit in controls, suggesting that polyamines (PAs) have a role in fruit shape. The obovoid fruit pericarp exhibited decreased cell layers and pericarp thickness compared to wild-type fruit. Transgenic floral buds and ovaries accumulated higher levels of free PAs, with the bound form of PAs being predominant. Transcripts of the fruit shape genes, SUN1 and OVATE, and those of CDKB2, CYCB2, KRP1 and WEE1 genes increased significantly in the transgenic ovaries 2 and 5 days after pollination (DAP). The levels of cell expansion genes CCS52A/B increased at 10 and 20 DAP in the transgenic fruits and exhibited negative correlation with free or bound forms of PAs. In addition, the cell layers and pericarp thickness of the transgenic fruits were inversely associated with free or bound PAs in 10 and 20 DAP transgenic ovaries. Collectively, these results provide evidence for a linkage between PA homeostasis and expression patterns of fruit shape, cell division, and cell expansion genes during early fruit development, and suggest role(s) of PAs in tomato fruit architecture.
Collapse
Affiliation(s)
- Raheel Anwar
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan.
| | - Shazia Fatima
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture, Agricultural Research Service, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|