1
|
Alvord M, McNally J, Casey C, Jankauski M. Turgor pressure affects transverse stiffness and resonant frequencies of buzz-pollinated poricidal anthers. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1784-1794. [PMID: 39699630 DOI: 10.1093/jxb/erae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood. Here, we performed three-point flexure tests and experimental modal analysis to determine anther transverse stiffness and resonant frequency, respectively. Dynamic nanoindentation was used to identify the anther storage modulus as a function of excitation frequency. We subsequently developed mathematical models to estimate how turgor pressure changes after the anther is removed from a flower, thereby emulating zero water availability. We found that anther stiffness decreased by 60% at 30 min post-ablation and anther resonant frequency decreased by 20% at 60 min post-ablation. Models indicated that turgor pressure in the fresh anther was ~0.2-0.3 MPa. Our findings suggest that natural fluctuations in turgor pressure due to environmental factors such as temperature and light intensity may require bees to adjust their foraging behaviors. Interestingly, the anther storage modulus increased with excitation frequency, underscoring the need for more sophisticated mechanical models that consider viscous fluid transport through plant tissue.
Collapse
Affiliation(s)
- Mitchell Alvord
- Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, Bozeman, MT 59717, USA
| | - Jenna McNally
- Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, Bozeman, MT 59717, USA
| | - Cailin Casey
- Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, Bozeman, MT 59717, USA
| | - Mark Jankauski
- Mechanical & Industrial Engineering, Montana State University, 220 Roberts Hall, Bozeman, MT 59717, USA
| |
Collapse
|
2
|
Mu T, Luo S, Li L, Zhang R, Wang P, Zhang G. A review of the interaction mechanisms between jasmonic acid (JA) and various plant hormones, as well as the core regulatory role of MYC2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112407. [PMID: 39894056 DOI: 10.1016/j.plantsci.2025.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Jasmonic acid (JA), as a defensive plant hormone, can synergistically or antagonistically interact with common hormones such as gibberellin (GA), abscisic acid (ABA), indole-3-acetic hormone acid (IAA), and ethylene (ETH) during the plant growth process, as well as interact with hormones such as melatonin (MT), brassinolide (BR), and resveratrol to regulate plant growth and development processes such as metabolite synthesis, pest and disease defense, and organ growth. The core regulatory factor MYC2 of JA mainly mediates the signal transduction pathways of these hormone interactions by interacting with other genes or regulating transcription. This article reviews the mechanism of cross-talk between JA and hormones such as ABA, GA, and salicylic acid (SA), and discusses the role of MYC2 in hormone interactions.
Collapse
Affiliation(s)
- Tingting Mu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Rongrong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070, China.
| |
Collapse
|
3
|
Peng W, He Y, He S, Luo J, Zeng Y, Zhang X, Huo Y, Jie Y, Xing H. Exogenous plant growth regulator and foliar fertilizers for phytoextraction of cadmium with Boehmeria nivea [L.] Gaudich from contaminated field soil. Sci Rep 2023; 13:11019. [PMID: 37419889 PMCID: PMC10329045 DOI: 10.1038/s41598-023-37971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
As a enrichment plant, ramie can be used for the phytoremediation of cadmium (Cd)-contaminated soil. However, it is worth exploring the role of plant growth regulators and foliar fertilizers in the process of plant growth and development and Cd adsorption. By measuring the agronomic traits, Cd content of aboveground and underground ramie, calculating the Cd transfer coefficient (TF) and Cd bioconcentration factors (BCF), and the correlation between various indicators. This study examined the effects of plant growth regulators and foliar fertilizers on ramie's capacity for Cd accumulation and transportation. Plant growth regulators and foliar fertilizers increased the Cd content of the aboveground ramie, reduced the Cd content of the underground ramie, and increased the TF. Among them, GA-1 increased the Cd content of the aboveground ramie to 3 times more than that of the control and reduced the Cd content of the underground ramie by 54.76%. Salicylic acid (SA) increased the Cd content of the aboveground ramie to three times more than that of the control. The combination of GA and foliar fertilizer reduced the Cd content of the aboveground and underground ramie and the TF and BCF of the underground ramie. After the hormones were sprayed, the TF of ramie had a significant positive correlation with the Cd content of the aboveground ramie; the BCF of the aboveground ramie had a significant positive correlation with the Cd content and TF of the aboveground ramie. The results indicate that Brassinolide (BR), gibberellin (GA), ethephon (ETH), polyamines (PAs), and salicylic acid (SA) have different effects on the enrichment and transport of Cd in ramie. This study provided an effective method to improve the capacity for ramie to adsorb heavy metals during cultivation.
Collapse
Affiliation(s)
- Wenxian Peng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yejun He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Si He
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Jinfeng Luo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yi Zeng
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Xiaoyang Zhang
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yingyi Huo
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Yucheng Jie
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China
| | - Hucheng Xing
- Ramie Research Institute (Hunan Agricultural University), Changsha, 410128, China.
- Key Laboratory of Germplasm Resources Innovation and Utilization, Changsha, 410128, China.
| |
Collapse
|
4
|
Saxena H, Negi H, Sharma B. Role of F-box E3-ubiquitin ligases in plant development and stress responses. PLANT CELL REPORTS 2023:10.1007/s00299-023-03023-8. [PMID: 37195503 DOI: 10.1007/s00299-023-03023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.
Collapse
Affiliation(s)
- Harshita Saxena
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia.
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Yang D, Wang Z, Huang X, Xu C. Molecular regulation of tomato male reproductive development. ABIOTECH 2023; 4:72-82. [PMID: 37220538 PMCID: PMC10199995 DOI: 10.1007/s42994-022-00094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The reproductive success of flowering plants, which directly affects crop yield, is sensitive to environmental changes. A thorough understanding of how crop reproductive development adapts to climate changes is vital for ensuring global food security. In addition to being a high-value vegetable crop, tomato is also a model plant used for research on plant reproductive development. Tomato crops are cultivated under highly diverse climatic conditions worldwide. Targeted crosses of hybrid varieties have resulted in increased yields and abiotic stress resistance; however, tomato reproduction, especially male reproductive development, is sensitive to temperature fluctuations, which can lead to aborted male gametophytes, with detrimental effects on fruit set. We herein review the cytological features as well as genetic and molecular pathways influencing tomato male reproductive organ development and responses to abiotic stress. We also compare the shared features among the associated regulatory mechanisms of tomato and other plants. Collectively, this review highlights the opportunities and challenges related to characterizing and exploiting genic male sterility in tomato hybrid breeding programs.
Collapse
Affiliation(s)
- Dandan Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Guo R, Ji S, Wang Z, Zhang H, Wang Y, Liu Z. Trichoderma asperellum xylanases promote growth and induce resistance in poplar. Microbiol Res 2021; 248:126767. [PMID: 33873138 DOI: 10.1016/j.micres.2021.126767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/18/2022]
Abstract
Xylanase secreted by Trichoderma asperellum ACCC30536 can stimulate the systemic resistance of host plants against pathogenic fungi. Following T. asperellum conidia co-culture with Populus davidiana × P. alba var. pyramidalis Louche (PdPap) seedlings, the expression of xylanases TasXyn29.4 and TasXyn24.2 in T. asperellum were upregulated, peaking at 12 h, by 106 (26.74) and 10.1 (23.34)-fold compared with the control, respectively. However, the expression of TasXyn24.4 and TasXyn24.0 was not detected. When recombinant xylanases rTasXyn29.4 and rTasXyn24.2 were heterologously expressed in Pichia pastoris GS115, their activities reached 18.9 IU/mL and 20.4 IU/mL, respectively. In PdPap seedlings induced by rTasXyn29.4 and rTasXyn24.2, the auxin and jasmonic acid signaling pathways were activated to promote growth and enhance resistance against pathogens. PdPap seedlings treated with both xylanases showed increased methyl jasmonate contents at 12 hpi, reaching 122 % (127 μg/g) compared with the control. However, neither of the xylanases could induce the salicylic acid signaling pathway in PdPap seedlings. Meanwhile, both xylanases could enhance the antioxidant ability of PdPap seedlings by improving their catalase activity. Both xylanases significantly induced systemic resistance of PdPap seedlings against Alternaria alternata, Rhizoctonia solani, and Fusarium oxysporum. However, the xylanases could only be sensed by the roots of the PdPap seedlings, not the leaves. In summary, rTasXyn29.4 and rTasXyn24.2 from T. asperellum ACCC30536 promoted growth and induced systemic resistance of PdPap seedlings, which endowed the PdPap seedlings broad-spectrum resistance to phytopathogens.
Collapse
Affiliation(s)
- Ruiting Guo
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shida Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Huifang Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zhihua Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
7
|
Jeong J, Park S, Im JH, Yi H. Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genomics 2021; 22:22. [PMID: 33407107 PMCID: PMC7789250 DOI: 10.1186/s12864-020-07345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13–1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13–1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions Sixty-two base pairs (bp) region (− 340 ~ − 279 bp upstream from start codon) and about 450 bp region (− 1489 to − 1017 bp) in BoGH3.13–1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07345-9.
Collapse
Affiliation(s)
- Jiseong Jeong
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunhee Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Hui Im
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Li Q, Zhang L, Pan F, Guo W, Chen B, Yang H, Wang G, Li X. Transcriptomic analysis reveals ethylene signal transduction genes involved in pistil development of pumpkin. PeerJ 2020; 8:e9677. [PMID: 32879792 PMCID: PMC7442037 DOI: 10.7717/peerj.9677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
Development of female flowers is an important process that directly affects the yield of Cucubits. Little information is available on the sex determination and development of female flowers in pumpkin, a typical monoecious plant. In the present study, we used aborted and normal pistils of pumpkin for RNA-Seq analysis and determined the differentially expressed genes (DEGs) to gain insights into the molecular mechanism underlying pistil development in pumpkin. A total of 3,817 DEGs were identified, among which 1,341 were upregulated and 2,476 were downregulated. The results of transcriptome analysis were confirmed by real-time quantitative RT-PCR. KEGG enrichment analysis showed that the DEGs were significantly enriched in plant hormone signal transduction and phenylpropanoid biosynthesis pathway. Eighty-four DEGs were enriched in the plant hormone signal transduction pathway, which accounted for 12.54% of the significant DEGs, and most of them were annotated as predicted ethylene responsive or insensitive transcription factor genes. Furthermore, the expression levels of four ethylene signal transduction genes in different flower structures (female calyx, pistil, male calyx, stamen, leaf, and ovary) were investigated. The ethyleneresponsive DNA binding factor, ERDBF3, and ethylene responsive transcription factor, ERTF10, showed the highest expression in pistils and the lowest expression in stamens, and their expression levels were 78- and 162-times more than that in stamens, respectively. These results suggest that plant hormone signal transduction genes, especially ethylene signal transduction genes, play an important role in the development of pistils in pumpkin. Our study provides a theoretical basis for further understanding of the mechanism of regulation of ethylene signal transduction genes in pistil development and sex determination in pumpkin.
Collapse
Affiliation(s)
- Qingfei Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Li Zhang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Feifei Pan
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Weili Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Bihua Chen
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Helian Yang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Guangyin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xin Xiang, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xin Xiang, China
| |
Collapse
|
9
|
Liu R, Wang J, Xiao M, Gao X, Chen J, Dai Y. AaCOI1, Encoding a CORONATINE INSENSITIVE 1-Like Protein of Artemisia annua L., Is Involved in Development, Defense, and Anthocyanin Synthesis. Genes (Basel) 2020; 11:genes11020221. [PMID: 32093127 PMCID: PMC7074131 DOI: 10.3390/genes11020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for plant development, defense, and metabolic homeostasis. AaCOI1 from Artemisia annua, homologous to Arabidopsis AtCOI1, encodes a F-box protein located in the nuclei. Expressional profiles of the AaCOI1 in the root, stem, leaves, and inflorescence was investigated. The mRNA abundance of AaCOI1 was the highest in inflorescence, followed by in the leaves. Upon mechanical wounding or MeJA treatment, expression of AaCOI1 was upregulated after 6 h. When ectopically expressed, driven by the native promoter from Arabidopsis thaliana, AaCOI1 could partially complement the JA sensitivity and defense responses, but fully complemented the fertility, and the JA-induced anthocyanin accumulation in a coi1-16 loss-of-function mutant. Our study identifies the paralog of AtCOI1 in Artemisia annua, and revealed its implications in development, hormone signaling, defense, and metabolism. The results provide insight into JA perception in Artemisia annua, and pave the way for novel molecular breeding strategies in the canonical herbs to manipulate the anabolism of pharmaceutic compounds on the phytohormonal level.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jinbiao Wang
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
| | - Mu Xiao
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Correspondence:
| | - Xiewang Gao
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jin Chen
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| | - Yanjiao Dai
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| |
Collapse
|