1
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Pastor-Fernández J, Sanmartín N, Manresa-Grao M, Cassan C, Pétriacq P, Gibon Y, Gamir J, Romero-Rodriguez B, Castillo AG, Cerezo M, Flors V, Sánchez-Bel P. Deciphering molecular events behind Systemin-induced resistance to Botrytis cinerea in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4111-4127. [PMID: 38581374 DOI: 10.1093/jxb/erae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Neus Sanmartín
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Maria Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Cédric Cassan
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Yves Gibon
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Jordi Gamir
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Beatriz Romero-Rodriguez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Victor Flors
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| |
Collapse
|
3
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
4
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
5
|
Skripnikov A. Bioassays for Identifying and Characterizing Plant Regulatory Peptides. Biomolecules 2023; 13:1795. [PMID: 38136666 PMCID: PMC10741408 DOI: 10.3390/biom13121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant peptides are a new frontier in plant biology, owing to their key regulatory roles in plant growth, development, and stress responses. Synthetic peptides are promising biological agents that can be used to improve crop growth and protection in an environmentally sustainable manner. Plant regulatory peptides identified in pioneering research, including systemin, PSK, HypSys, RALPH, AtPep1, CLV3, TDIF, CLE, and RGF/GLV/CLEL, hold promise for crop improvement as potent regulators of plant growth and defense. Mass spectrometry and bioinformatics are greatly facilitating the discovery and identification of new plant peptides. The biological functions of most novel plant peptides remain to be elucidated. Bioassays are an essential part in studying the biological activity of identified and putative plant peptides. Root growth assays and cultivated plant cell cultures are widely used to evaluate the regulatory potential of plant peptides during growth, differentiation, and stress reactions. These bioassays can be used as universal approaches for screening peptides from different plant species. Development of high-throughput bioassays can facilitate the screening of large numbers of identified and putative plant peptides, which have recently been discovered but remain uncharacterized for biological activity.
Collapse
Affiliation(s)
- Alexander Skripnikov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya St. 16/10, 119997 Moscow, Russia;
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
6
|
Pastor-Fernández J, Sánchez-Bel P, Flors V, Cerezo M, Pastor V. Small Signals Lead to Big Changes: The Potential of Peptide-Induced Resistance in Plants. J Fungi (Basel) 2023; 9:265. [PMID: 36836379 PMCID: PMC9965805 DOI: 10.3390/jof9020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The plant immunity system is being revisited more and more and new elements and roles are attributed to participating in the response to biotic stress. The new terminology is also applied in an attempt to identify different players in the whole scenario of immunity: Phytocytokines are one of those elements that are gaining more attention due to the characteristics of processing and perception, showing they are part of a big family of compounds that can amplify the immune response. This review aims to highlight the latest findings on the role of phytocytokines in the whole immune response to biotic stress, including basal and adaptive immunity, and expose the complexity of their action in plant perception and signaling events.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
- Department of Plant Molecular Genetics, National Centre for Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Paloma Sánchez-Bel
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Miguel Cerezo
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
7
|
Pastor V, Cervero R, Gamir J. The simultaneous perception of self- and non-self-danger signals potentiates plant innate immunity responses. PLANTA 2022; 256:10. [PMID: 35697869 PMCID: PMC9192368 DOI: 10.1007/s00425-022-03918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The simultaneous perception of endogenous and exogenous danger signals potentiates PAMP-triggered immunity in tomato and other downstream defence responses depending on the origin of the signal. Abstract Plant cells perceive a pathogen invasion by recognising endogenous or exogenous extracellular signals such as Damage-Associated Molecular Patterns (DAMPs) or Pathogen-Associated Molecular Patterns (PAMPs). In particular, DAMPs are intracellular molecules or cell wall fragments passive or actively released to the apoplast, whose extracellular recognition by intact cells triggers specific immune signalling, the so-called DAMP-triggered immunity. The extracellular recognition of DAMPs and PAMPs leads to a very similar intracellular signalling, and this similarity has generated a biological need to know why plants perceive molecules with such different origins and with overlapped innate immunity responses. Here, we report that the simultaneous perception of DAMPs and a PAMP strengthens early and late plant defence responses. To this aim, we studied classical PTI responses such as the generation of ROS and MAPK phosphorylation, but we also monitored the biosynthesis of phytocytokines and performed a non-targeted metabolomic analysis. We demonstrate that co-application of the bacterial peptide flagellin with the DAMPs cyclic AMP or cellobiose amplifies PAMP-triggered immunity responses. Both co-applications enhanced the synthesis of phytocytokines, but only simultaneous treatments with cAMP strengthened the flagellin-dependent metabolomic responses. In addition, cAMP and cellobiose treatments induced resistance against the hemibiotrophic bacteria Pseudomonas syringae pv. tomato DC3000. Overall, these results indicate that the complex mixture of DAMPs and PAMPs carries specific information that potentiates plant defence responses. However, downstream responses seem more specific depending on the composition of the mixture.
Collapse
Affiliation(s)
- Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain
| | - Raquel Cervero
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain
| | - Jordi Gamir
- Metabolic Integration and Cell Signaling Group, Departamento de Biología, Bioquímica y Ciencias Naturales, University Jaume I of Castellón, 12071, Castelló de la Plana, Spain.
| |
Collapse
|
8
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Aprile AM, Langella E, Rigano MM, Francesca S, Chiaiese P, Palmieri G, Tatè R, Sinno M, Barra E, Becchimanzi A, Monti SM, Pennacchio F, Rao R. Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:887674. [PMID: 35685017 PMCID: PMC9173717 DOI: 10.3389/fpls.2022.887674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Prosystemin is a 200-amino acid precursor expressed in Solanaceae plants which releases at the C-terminal part a peptidic hormone called Systemin in response to wounding and herbivore attack. We recently showed that Prosystemin is not only a mere scaffold of Systemin but, even when deprived of Systemin, is biologically active. These results, combined with recent discoveries that Prosystemin is an intrinsically disordered protein containing disordered regions within its sequence, prompted us to investigate the N-terminal portions of the precursor, which contribute to the greatest disorder within the sequence. To this aim, PS1-70 and PS1-120 were designed, produced, and structurally and functionally characterized. Both the fragments, which maintained their intrinsic disorder, were able to induce defense-related genes and to protect tomato plants against Botrytis cinerea and Spodoptera littoralis larvae. Intriguingly, the biological activity of each of the two N-terminal fragments and of Systemin is similar but not quite the same and does not show any toxicity on experimental non-targets considered. These regions account for different anti-stress activities conferred to tomato plants by their overexpression. The two N-terminal fragments identified in this study may represent new promising tools for sustainable crop protection.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Aprile
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Naples, Italy
| | - Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Eleonora Barra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
10
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. BIOLOGY 2022; 11:biology11010124. [PMID: 35053122 PMCID: PMC8772835 DOI: 10.3390/biology11010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Prosystemin is a 200 amino acid precursor that releases, upon wounding and biotic attacks, an 18 amino acid peptide called Systemin. This peptide was traditionally considered as the principal actor of the resistance of tomato plants induced by triggering multiple defense pathways in response to a wide range of biotic/abiotic stress agents. Recent findings from our group discovered the disordered structure of Prosystemin that promotes the binding of different molecular partners and the possible activation of multiple stress-related pathways. All of our recent findings suggest that Prosystemin could be more than a simple precursor of Systemin peptide. Indeed, we hypothesized that it contains other sequences able to activate multiple stress-related responses. To verify this hypothesis, we produced a truncated Prosystemin protein deprived of the Systemin peptide and the relative deleted gene. Experiments with transgenic tomato plants overexpressing the truncated Prosystemin and with plants exogenously treated with the recombinant truncated protein demonstrated that both transgenic and treated plants modulated the expression of defense-related genes and were protected against a noctuid moth and a fungal pathogen. Taken together, our results demonstrated that Prosystemin is not a mere scaffold of Systemin, but itself contains other biologically active regions. Abstract Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Materias s.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
- Correspondence: (S.M.M.); (R.R.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - John Paul Delano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36500, Mexico;
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence: (S.M.M.); (R.R.)
| |
Collapse
|
11
|
Colonization of Solanum melongena and Vitis vinifera Plants by Botrytis cinerea Is Strongly Reduced by the Exogenous Application of Tomato Systemin. J Fungi (Basel) 2020; 7:jof7010015. [PMID: 33383908 PMCID: PMC7824362 DOI: 10.3390/jof7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 01/11/2023] Open
Abstract
Plant defense peptides are able to control immune barriers and represent a potential novel resource for crop protection. One of the best-characterized plant peptides is tomato Systemin (Sys) an octadecapeptide synthesized as part of a larger precursor protein. Upon pest attack, Sys interacts with a leucine-rich repeat receptor kinase, systemin receptor SYR, activating a complex intracellular signaling pathway that leads to the wound response. Here, we demonstrated, for the first time, that the direct delivery of the peptide to Solanum melongena and Vitis vinifera plants protects from the agent of Grey mould (Botrytis cinerea). The observed disease tolerance is associated with the increase of total soluble phenolic content, the activation of antioxidant enzymes, and the up-regulation of defense-related genes in plants treated with the peptide. Our results suggest that in treated plants, the biotic defense system is triggered by the Sys signaling pathway as a consequence of Sys interaction with a SYR-like receptor recently found in several plant species, including those under investigation. We propose that this biotechnological use of Sys, promoting defense responses against invaders, represents a useful tool to integrate into pest management programs for the development of novel strategies of crop protection.
Collapse
|
12
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
13
|
Zhang H, Zhang H, Lin J. Systemin-mediated long-distance systemic defense responses. THE NEW PHYTOLOGIST 2020; 226:1573-1582. [PMID: 32083726 DOI: 10.1111/nph.16495] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
Systemin, a peptide plant hormone of 18 amino acids, coordinates local and systemic immune responses. The activation of the canonical systemin-mediated systemic signaling pathway involves systemin release from its precursor prosystemin, systemin binding to its membrane receptor SYSTEMIN RECEPTOR1 (SYR1), and the transport of long-distance signaling molecules, including jasmonic acid, the prosystemin mRNA, volatile organic compounds and possibly systemin itself. Here, we review emerging evidence that the disordered structure and unconventional processing and secretion of systemin contribute to the regulation of systemin-mediated signaling during plant defense. We highlight recent advances in systemin research, which elucidated how cells integrate multiple long-distance signals into the systemic defense response. In addition, we discuss the perception of systemin by SYR1 and its mediation of downstream defense responses.
Collapse
Affiliation(s)
- Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design and College of Biological Sciences, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
14
|
Pastor-Fernández J, Gamir J, Pastor V, Sanchez-Bel P, Sanmartín N, Cerezo M, Flors V. Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. FRONTIERS IN PLANT SCIENCE 2020; 11:529. [PMID: 32536929 PMCID: PMC7225342 DOI: 10.3389/fpls.2020.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/07/2020] [Indexed: 05/20/2023]
Abstract
Peptides are important regulators that participate in the modulation of almost every physiological event in plants, including defense. Recently, many of these peptides have been described as defense elicitors, termed phytocytokines, that are released upon pest or pathogen attack, triggering an amplification of plant defenses. However, little is known about peptides sensing and inducing resistance activities in heterologous plants. In the present study, exogenous peptides from solanaceous species, Systemins and HypSys, are sensed and induce resistance to the necrotrophic fungus Plectosphaerella cucumerina in the taxonomically distant species Arabidopsis thaliana. Surprisingly, other peptides from closer taxonomic clades have very little or no effect on plant protection. In vitro bioassays showed that the studied peptides do not have direct antifungal activities, suggesting that they protect the plant through the promotion of the plant immune system. Interestingly, tomato Systemin was able to induce resistance at very low concentrations (0.1 and 1 nM) and displays a maximum threshold being ineffective above at higher concentrations. Here, we show evidence of the possible involvement of the JA-signaling pathway in the Systemin-Induced Resistance (Sys-IR) in Arabidopsis. Additionally, Systemin treated plants display enhanced BAK1 and BIK1 gene expression following infection as well as increased production of ROS after PAMP treatment suggesting that Systemin sensitizes Arabidopsis perception to pathogens and PAMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| |
Collapse
|