1
|
Toyomoto D, Shibata Y, Uemura M, Taura S, Sato T, Henry R, Ishikawa R, Ichitani K. Seed abortion caused by the combination of two duplicate genes in the progeny from the cross between Oryza sativa and Oryza meridionalis. BREEDING SCIENCE 2024; 74:146-158. [PMID: 39355629 PMCID: PMC11442109 DOI: 10.1270/jsbbs.23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 10/03/2024]
Abstract
Seed development is an essential phenomenon for all sexual propagative plant species. The functional allele at SEED DEVELOPMENT 1 (SDV1) or SEED DEVELOPMENT 2 (SDV2) loci is essential for seed development for Oryza sativa and Oryza meridionalis. In the present study, we performed fine mapping of SDV1, narrowing down the area of interest to 333kb on chromosome 6. Haplotype analysis around the SDV1 locus of O. meridionalis accessions indicated that they shared the DNA polymorphism, suggesting that they have a common abortive allele at the SDV1 locus. Linkage analysis of the candidate SDV2 gene showed that it was located on chromosome 4. The candidate SDV2 was confirmed using a population in which both the SDV1 and SDV2 genes were segregating. The chromosomal region covering the SDV1 gene was predicted to contain 30 protein-coding genes in O. sativa. Five of these genes have conserved DNA sequences in the chromosomal region of the SDV2 gene on chromosome 4, and not on chromosome 6, of O. meridionalis. These results suggest that these five genes could be candidates for SDV1, and that their orthologous genes located on chromosome 4 of O. meridionalis could be candidates for SDV2.
Collapse
Affiliation(s)
- Daiki Toyomoto
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Yukika Shibata
- Graduate school of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masato Uemura
- Graduate school of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Institute of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Katsuyuki Ichitani
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
3
|
Shah S, Tsuneyoshi H, Ichitani K, Taura S. QTL Analysis Revealed One Major Genetic Factor Inhibiting Lesion Elongation by Bacterial Blight (Xanthomonas oryzae pv. oryzae) from a japonica Cultivar Koshihikari in Rice. PLANTS 2022; 11:plants11070867. [PMID: 35406847 PMCID: PMC9003242 DOI: 10.3390/plants11070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that has ravaged the rice industry as the causal agent of bacterial blight (BB) diseases in rice. Koshihikari (KO), an elite japonica cultivar, and ARC7013 (AR), an indica cultivar, are both susceptible to Xoo. Their phenotypic characteristics reveal that KO has shorter lesion length than that of AR. The F2 population from KO × AR results in continuous distribution of lesion length by inoculation of an Xoo race (T7147). Consequently, quantitative trait loci (QTL) mapping of the F2 population is conducted, covering 12 chromosomes with 107 simple sequence repeat (SSR) and insertion/deletion (InDel) genetic markers. Three QTLs are identified on chromosomes 2, 5, and 10. Of them, qXAR5 has the strongest resistance variance effect of 20.5%, whereas qXAR2 and qXAR10 have minor QTL effects on resistance variance, with 3.9% and 2.3%, respectively, for a total resistance variance of 26.7%. The QTLs we examine for this study differ from the loci of BB resistance genes from earlier studies. Our results can help to facilitate understanding of genetic and morphological fundamentals for use in rice breeding programs that are more durable against evolving Xoo pathogens and uncertain climatic temperature.
Collapse
Affiliation(s)
- Shameel Shah
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
| | - Hiroaki Tsuneyoshi
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Katsuyuki Ichitani
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Graduate School of Agriculture Science Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (S.S.); (K.I.)
- Division of Gene Research, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-0992853590
| |
Collapse
|
4
|
Hasan S, Furtado A, Henry R. Reticulate Evolution in AA-Genome Wild Rice in Australia. FRONTIERS IN PLANT SCIENCE 2022; 13:767635. [PMID: 35360335 PMCID: PMC8963485 DOI: 10.3389/fpls.2022.767635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The wild rice gene pool, i.e., AA-genome, in Australia is geographically and genetically distinct from that in Asia. Two distinct taxa are found growing together in northern Australia, Oryza meridionalis (including annual and perennial forms) and an Oryza rufipogon like taxa that have been shown to have a chloroplast genome sequence that is closer to that of O. meridionalis than to O. rufipogon from Asia. Rare plants of intermediate morphology have been observed in the wild despite a reported reproductive barrier between these two species. We now report the resequencing of plants from 26 populations including both taxa and putative hybrids. A comparison of chloroplast and nuclear genome sequences indicated re-combinations that demonstrated hybridisation in both directions. Individuals with intermediate morphology had high nuclear genome heterozygosity consistent with a hybrid origin. An examination of specific genes (e.g., starch biosynthesis genes) revealed the presence of heterozygotes with alleles from both parents suggesting that some wild plants were early generation hybrids. These plants may have low cross-fertility preserving the continuation of the two distinct species. Repeated backcrossing of these rare hybrids to one parent would explain the plants exhibiting chloroplast capture. These observations suggest that reticulate evolution is continuing in wild Oryza populations and may have been a key process in rice evolution and domestication.
Collapse
Affiliation(s)
- Sharmin Hasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Department of Botany, Jagannath University, Dhaka, Bangladesh
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Ichitani K, Toyomoto D, Uemura M, Monda K, Ichikawa M, Henry R, Sato T, Taura S, Ishikawa R. New Hybrid Spikelet Sterility Gene Found in Interspecific Cross between Oryza sativa and O. meridionalis. PLANTS 2022; 11:plants11030378. [PMID: 35161359 PMCID: PMC8839173 DOI: 10.3390/plants11030378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Various kinds of reproductive barriers have been reported in intraspecific and interspecific crosses between the AA genome Oryza species, to which Asian rice (O. sativa) and African rice (O. glaberrima) belong. A hybrid seed sterility phenomenon was found in the progeny of the cross between O. sativa and O. meridionalis, which is found in Northern Australia and Indonesia and has diverged from the other AA genome species. This phenomenon could be explained by an egg-killer model. Linkage analysis using DNA markers showed that the causal gene was located on the distal end of chromosome 1. Because no known egg-killer gene was located in that chromosomal region, this gene was named HYBRID SPIKELET STERILITY 57 (abbreviated form, S57). In heterozygotes, the eggs carrying the sativa allele are killed, causing semi-sterility. This killer system works incompletely: some eggs carrying the sativa allele survive and can be fertilized. The distribution of alleles in wild populations of O. meridionalis was discussed from the perspective of genetic differentiation of populations.
Collapse
Affiliation(s)
- Katsuyuki Ichitani
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Correspondence: ; Tel.: +81-99-285-8547
| | - Daiki Toyomoto
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Masato Uemura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Kentaro Monda
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Makoto Ichikawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Tadashi Sato
- Graduate School of Life Science, Tohoku University, Sendai 980-8577, Miyagi, Japan;
| | - Satoru Taura
- Institute of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan;
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Aomori, Japan;
| |
Collapse
|
6
|
Tezuka T, Kitamura N, Imagawa S, Hasegawa A, Shiragaki K, He H, Yanase M, Ogata Y, Morikawa T, Yokoi S. Genetic Mapping of the HLA1 Locus Causing Hybrid Lethality in Nicotiana Interspecific Hybrids. PLANTS 2021; 10:plants10102062. [PMID: 34685871 PMCID: PMC8539413 DOI: 10.3390/plants10102062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Hybrid lethality, a postzygotic mechanism of reproductive isolation, is a phenomenon that causes the death of F1 hybrid seedlings. Hybrid lethality is generally caused by the epistatic interaction of two or more loci. In the genus Nicotiana, N. debneyi has the dominant allele Hla1-1 at the HLA1 locus that causes hybrid lethality in F1 hybrid seedlings by interaction with N. tabacum allele(s). Here, we mapped the HLA1 locus using the F2 population segregating for the Hla1-1 allele derived from the interspecific cross between N. debneyi and N. fragrans. To map HLA1, several DNA markers including random amplified polymorphic DNA, amplified fragment length polymorphism, and simple sequence repeat markers, were used. Additionally, DNA markers were developed based on disease resistance gene homologs identified from the genome sequence of N. benthamiana. Linkage analysis revealed that HLA1 was located between two cleaved amplified polymorphic sequence markers Nb14-CAPS and NbRGH1-CAPS at a distance of 10.8 and 10.9 cM, respectively. The distance between these markers was equivalent to a 682 kb interval in the genome sequence of N. benthamiana.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Correspondence:
| | - Naoto Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Sae Imagawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (S.I.); (A.H.)
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Masanori Yanase
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan; (N.K.); (K.S.); (H.H.); (M.Y.); (Y.O.); (T.M.); (S.Y.)
- Education and Research Field, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21st Century, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Msami JA, Kawaguchi Y, Ichitani K, Taura S. Linkage analysis of rice bacterial blight resistance gene xa20 in XM6, a mutant line from IR24. BREEDING SCIENCE 2021; 71:144-154. [PMID: 34377062 PMCID: PMC8329881 DOI: 10.1270/jsbbs.20104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 06/13/2023]
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is an important disease constraining rice (Oryza sativa L.) production worldwide. The XM6 line was induced by N-methyl-N-nitrosourea from IR24, an Indica cultivar that is susceptible to Philippine and Japanese Xoo races. XM6 was confirmed to carry a recessive gene named xa20, resistant to six Philippine and five Japanese Xoo races. The chromosomal gene location was found using 10 plants with the shortest lesion length in an F2 population consisting of 298 plants from a susceptible Japonica variety Koshihikari × XM6. Analysis using PCR-based DNA markers covering the whole rice genome indicated the gene as located on the distal region of the long arm of chromosome 3. The IKC3 line carries IR24 genetic background with Koshihikari fragment on chromosome 3 where a resistance gene was thought to be located. The F2 population from IKC3 × XM6 clearly showed a bimodal distribution separating resistant and susceptible plants. Further linkage analysis conducted using this F2 population revealed that xa20 is located within the 0.8 cM region flanked by DNA markers KIC3-33.88 (33.0 Mb) and KIC3-34.06 (33.2 Mb). This study yields important findings for resistance breeding and for the genetic mechanism of Xoo resistance.
Collapse
Affiliation(s)
- Jessey Anderson Msami
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshiki Kawaguchi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Katsuyuki Ichitani
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Division of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Moner AM, Furtado A, Henry RJ. Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production. BMC PLANT BIOLOGY 2020; 20:472. [PMID: 33054735 PMCID: PMC7558744 DOI: 10.1186/s12870-020-02689-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The whole chloroplast genomes of 3018 rice genotypes were assembled from available sequence data by alignment with a reference rice chloroplast genome sequence, providing high quality chloroplast genomes for analysis of diversity on a much larger scale than in any previous plant study. RESULTS Updated annotation of the chloroplast genome identified 13 more tRNA genes and 30 more introns and defined the function of more of the genes. Domesticated rice had chloroplast genomes that were distinct from those in wild relatives. Analysis confirms an Australian chloroplast clade as a sister to the domesticated clade. All domesticated rice genotypes could be assigned to one of two main clades suggesting the domestication of two distinct maternal genome clades that diverged long before domestication. These clades were very distinct having 4 polymorphisms between all 1486 accession in clade A and all 1532 accessions in clade B. These would result in expression of 3 proteins with altered amino acid sequences and a tRNA with an altered sequence and may be associated with adaptive evolution of the two chloroplast types. Diversity within these pools may have been captured during domestication with subclades enriched in specific groups such as basmati, tropical japonica and temperate japonica. However the phylogenies of the chloroplast and nuclear genomes differed possibly due to modern rice breeding and reticulate evolution prior to domestication. Indica and aus genotypes were common in both chloroplast clades while japonica genotypes were more likely to be found in the same clade (cladeB). CONCLUSIONS The different evolutionary paths of the cytoplasmic and nuclear genomes of rice have resulted in the presence of apparently functional chloroplast genome diversity and the implications for rice crop performance require further investigation.
Collapse
Affiliation(s)
- Ali Mohammad Moner
- Genetic Engineering and Biotechnology Institute for Post Graduate Studies, University of Baghdad, Baghdad, Iraq
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|