1
|
Jossier M, Oury C, Glab N, Hodges M. Purification of Recombinant N-terminal Histidine-Tagged Arabidopsis thaliana Phosphoglycolate Phosphatase 1, Glycolate Oxidase 1 and 2, and Hydroxypyruvate Reductase 1. Methods Mol Biol 2024; 2792:97-111. [PMID: 38861081 DOI: 10.1007/978-1-0716-3802-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells. They can be rapidly purified as histidine-tagged recombinant proteins by immobilized metal affinity chromatography using Ni2+-NTA-agarose. This chapter describes protocols to purify several Arabidopsis thaliana His-tagged recombinant photorespiratory enzymes (phosphoglycolate phosphatase, glycolate oxidase, and hydroxypyruvate reductase) from Escherichia coli cell cultures using two bacterial strain-plasmid systems: BL21(DE3)-pET and LMG194-pBAD.
Collapse
Affiliation(s)
- Mathieu Jossier
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| | - Céline Oury
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Nathalie Glab
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Kataya A, Fedosejevs E, Ye Y. Editorial: Post-translational mechanisms involved in regulating peroxisome biogenesis, functions and organelle-crosstalk. Front Cell Dev Biol 2023; 11:1136992. [PMID: 36711036 PMCID: PMC9877304 DOI: 10.3389/fcell.2023.1136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Affiliation(s)
- Amr Kataya
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,*Correspondence: Amr Kataya, ,
| | - Eric Fedosejevs
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Yajin Ye
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
5
|
Li X, Liao M, Huang J, Chen L, Huang H, Wu K, Pan Q, Zhang Z, Peng X. Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1429-1446. [PMID: 36382906 DOI: 10.1111/tpj.16022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Linru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiyin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Kaixin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Kataya A, Gautam N, Jamshed M, Muench DG, Samuel MA, Thelen JJ, Moorhead GB. Identification of Arabidopsis Protein Kinases That Harbor Functional Type 1 Peroxisomal Targeting Signals. Front Cell Dev Biol 2022; 10:745883. [PMID: 35242755 PMCID: PMC8886021 DOI: 10.3389/fcell.2022.745883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Peroxisomes are eukaryotic specific organelles that perform diverse metabolic functions including fatty acid β-oxidation, reactive species metabolism, photorespiration, and responses to stress. However, the potential regulation of these functions by post-translational modifications, including protein phosphorylation, has had limited study. Recently, we identified and catalogued a large number of peroxisomal phosphorylated proteins, implicating the presence of protein kinases in this organelle. Here, we employed available prediction models coupled with sequence conservation analysis to identify 31 protein kinases from the Arabidopsis kinome (all protein kinases) that contain a putative, non-canonical peroxisomal targeting signal type 1 (PTS1). From this, twelve C-terminal domain-PTS1s were demonstrated to be functional in vivo, targeting enhanced yellow fluorescent protein to peroxisomes, increasing the list of presumptive peroxisomal protein kinases to nineteen. Of the twelve protein kinases with functional PTS1s, we obtained full length clones for eight and demonstrated that seven target to peroxisomes in vivo. Screening homozygous mutants of the presumptive nineteen protein kinases revealed one candidate (GPK1) that harbors a sugar-dependence phenotype, suggesting it is involved in regulating peroxisomal fatty acid β-oxidation. These results present new opportunities for investigating the regulation of peroxisome functions.
Collapse
Affiliation(s)
- Amr Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Nitija Gautam
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jay J Thelen
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Timm S, Arrivault S. Regulation of Central Carbon and Amino Acid Metabolism in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:430. [PMID: 33668292 PMCID: PMC7996223 DOI: 10.3390/plants10030430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
Fluctuations in the prevailing environmental conditions, including light availability and intensity, CO2/O2 ratio, temperature, and nutrient or water supply, require rapid metabolic switches to maintain proper metabolism [...].
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|