1
|
Vetal PV, Jaskolowski A, Poirier Y. Transit of NEAT1 and MTP11 to the plasma membrane and co-localization to vesicles support a role for exocytosis-mediated export in metal homeostasis. PHYSIOLOGIA PLANTARUM 2025; 177:e70067. [PMID: 39844728 DOI: 10.1111/ppl.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis. We explored whether CME inhibition can identify other transporters that, although primarily localized at Golgi/TGN at steady-state level, also transit via the PM and are potentially involved in export via exocytosis. We found that, similar to PHO1, Golgi-localized transporters NA EFFLUX TRANSPORTER1 (NAET1) and METAL TOLERANCE PROTEIN11 (MTP11) relocate to the PM when CME is inhibited, both transiently in Nicotiana benthamiana and conditionally in Arabidopsis thaliana. Such PM re-localization of transporters upon CME inhibition is specific, since it does not occur with several other Golgi-associated transporters, including MTP5 and BIVALENT CATION TRANSPORTER 3 (BICAT3), as well as resident Golgi/TGN membrane proteins, such as α-1,2-MANNOSIDASE I (Man1) and VESICLE TRANSPORT V-SNARE 12 (VTI12). Additionally, we observed that NAET1, MTP11 and PHO1 all partially co-localize to vesicles. Overall, our study supports a role for synaptic-like vesicle-mediated exocytosis for both NEAT1 and MTP11 in nutrient transport in plants and highlights the importance of assessing the transient localization of Golgi/TGN proteins to the PM.
Collapse
Affiliation(s)
- Pallavi V Vetal
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Zou Y, Xu E, Fan Y, Zhang P, Zhang W, Chen X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108054. [PMID: 37757723 DOI: 10.1016/j.plaphy.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Manganese (Mn), a vital element, plays crucial roles in various biochemical and physiological processes by serving as an essential cofactor for numerous enzymes and acting as a catalytically active metal within biological clusters. In this study, we investigate the role of PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 2 (OsPML2), a member of the UNCHARACTERIZED PROTEIN FAMILY 0016 (UPF0016) family, in regulating Mn homeostasis in rice. OsPML2 was highly expressed in young leaves, ovaries, and stigmas. Cross sections from young leaves revealed that OsPML2 was mainly expressed in the phloem region and mesophyll cells. Furthermore, heterologous expression of OsPML2 restored the growth of Mn uptake-defective yeast strain Δsmf1 under Mn-limited conditions. Subcellular localization analysis demonstrated that OsPML2 was specifically localized in the chloroplast envelope. Knockdown of OsPML2 resulted in reduced chloroplast Mn content, significantly affecting plant growth under Mn deficiency. Furthermore, analysis of isolated thylakoid membranes using blue native gels indicated a compromised accumulation of photosystem II (PSII) complexes in OsPML2 knockdown lines. Additionally, grain yield, grain length, and width were significantly reduced in OsPML2 knockdown plants. Collectively, our findings provide insights into the transport function of OsPML2, which facilitates Mn transport from the cytosol to chloroplast stroma and influences the accumulation of PSII complexes in rice.
Collapse
Affiliation(s)
- Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Ending Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China; Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ye Fan
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
3
|
Legrand D, Herbaut M, Durin Z, Brysbaert G, Bardor M, Lensink MF, Foulquier F. New insights into the pathogenicity of TMEM165 variants using structural modeling based on AlphaFold 2 predictions. Comput Struct Biotechnol J 2023; 21:3424-3436. [PMID: 37416081 PMCID: PMC10319644 DOI: 10.1016/j.csbj.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165's function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.
Collapse
Affiliation(s)
- Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Mélissandre Herbaut
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Zoé Durin
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Muriel Bardor
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
4
|
Kosuth T, Leskova A, Castaings L, Curie C. Golgi in and out: multifaceted role and journey of manganese. THE NEW PHYTOLOGIST 2023; 238:1795-1800. [PMID: 36856330 DOI: 10.1111/nph.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is pivotal for plant growth and development but little is known about the processes that control its homeostasis in the cell. A spotlight on the pools of intracellular manganese and their cellular function has recently been gained through the characterization of new Mn transporters. In particular, transporters catalyzing the ins and outs of Mn at the various Golgi membranes have revealed the central role of the Golgi pool of Mn in the synthesis of the cell wall and as a reservoir for the numerous cellular Mn-dependent pathways whose calibration relies on a set of Golgi-resident transporters of the BICAT and NRAMP families.
Collapse
Affiliation(s)
- Thibault Kosuth
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandra Leskova
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Loren Castaings
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Farthing EC, Henbest KC, Garcia‐Becerra T, Peaston KA, Williams LE. Dissecting the relative contribution of ECA3 and group 8/9 cation diffusion facilitators to manganese homeostasis in Arabidopsis thaliana. PLANT DIRECT 2023; 7:e495. [PMID: 37228331 PMCID: PMC10202827 DOI: 10.1002/pld3.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
Manganese (Mn) is an essential micronutrient for plant growth but becomes toxic when present in excess. A number of Arabidopsis proteins are involved in Mn transport including ECA3, MTPs, and NRAMPs; however, their relative contributions to Mn homeostasis remain to be demonstrated. A major focus here was to clarify the importance of ECA3 in responding to Mn deficiency and toxicity using a range of mutants. We show that ECA3 localizes to the trans-Golgi and plays a major role in response to Mn deficiency with severe effects seen in eca3 nramp1 nramp2 under low Mn supply. ECA3 plays a minor role in Mn-toxicity tolerance, but only when the cis-Golgi-localized MTP11 is non-functional. We also use mutants and overexpressors to determine the relative contributions of MTP members to Mn homeostasis. The trans-Golgi-localized MTP10 plays a role in Mn-toxicity tolerance, but this is only revealed in mutants when MTP8 and MTP11 are non-functional and when overexpressed in mtp11 mutants. MTP8 and MTP10 confer greater Mn-toxicity resistance to the pmr1 yeast mutant than MTP11, and an important role for the first aspartate in the fifth transmembrane domain DxxxD motif is demonstrated. Overall, new insight into the relative influence of key transporters in Mn homeostasis is provided.
Collapse
Affiliation(s)
- Emily C. Farthing
- School of Biological SciencesUniversity of SouthamptonSouthamptonHampshireUK
| | - Kate C. Henbest
- School of Biological SciencesUniversity of SouthamptonSouthamptonHampshireUK
| | | | - Kerry A. Peaston
- School of Biological SciencesUniversity of SouthamptonSouthamptonHampshireUK
| | | |
Collapse
|
6
|
Wege S. Manganese management in plants: Golgi transporter determines manganese allocation and cell wall composition. PLANT PHYSIOLOGY 2022; 190:2077-2079. [PMID: 36124988 PMCID: PMC9706420 DOI: 10.1093/plphys/kiac429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
|
7
|
Wu C, Guo Z, Zhang M, Chen H, Peng M, Abubakar YS, Zheng H, Yun Y, Zheng W, Wang Z, Zhou J. Golgi-localized calcium/manganese transporters FgGdt1 and FgPmr1 regulate fungal development and virulence by maintaining Ca 2+ and Mn 2+ homeostasis in Fusarium graminearum. Environ Microbiol 2022; 24:4623-4640. [PMID: 35837846 DOI: 10.1111/1462-2920.16128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Calcium and manganese transporters play important roles in regulating Ca2+ and Mn2+ homeostasis in cells, which is necessary for the normal physiological activities of eukaryotes. Gdt1 and Pmr1 function as calcium/manganese transporters in the Golgi apparatus. However, the functions of Gdt1 and Pmr1 have not been previously characterized in the plant pathogenic fungus Fusarium graminearum. Here, we identified and characterized the biological functions of FgGdt1 and FgPmr1 in F. graminearum. Our study shows that FgGdt1 and FgPmr1 are both localized to the cis- and medial-Golgi. Disruption of FgGdt1 or FgPmr1 in F. graminearum caused serious defects in vegetative growth, conidiation, sexual development and significantly decreased virulence in wheat but increased deoxynivalenol (DON) production. Importantly, FgGdt1 is involved in Ca2+ and Mn2+ homeostasis and the severe phenotypic defects of the ΔFggdt1 mutant were largely due to loss of FgGdt1 function in Mn2+ transportation. FgGdt1-mCherry colocalizes with FgPmr1-GFP at the Golgi, and FgGDT1 exerts its biological function upstream of FgPMR1. Taken together, our results collectively demonstrate that the cis- and medial-Golgi-localized proteins FgGdt1 and FgPmr1 regulate Ca2+ and Mn2+ homeostasis of the Golgi apparatus, and this function is important in modulating the growth, development, DON biosynthesis and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Congxian Wu
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongkun Guo
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiru Zhang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huilin Chen
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Toustou C, Walet‐Balieu M, Kiefer‐Meyer M, Houdou M, Lerouge P, Foulquier F, Bardor M. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:732-748. [PMID: 34873817 PMCID: PMC9300197 DOI: 10.1111/brv.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
N-glycosylation is an important post-translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N-glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N-glycan processing and further describe recent findings regarding the diversity of N-glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N-glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N-glycosylation are highlighted, especially the regulation of the biosynthesis of complex-type N-glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
Collapse
Affiliation(s)
- Charlotte Toustou
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Laure Walet‐Balieu
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marie‐Christine Kiefer‐Meyer
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - Marine Houdou
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenHerestraat 49, Box 802Leuven3000Belgium
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
| | - François Foulquier
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale (Glyco‐MEV) EA4358Mont‐Saint‐Aignan76821France
- Univ Lille, CNRS, UMR 8576 ‐ UGSF ‐ Unité de Glycobiologie Structurale et FonctionnelleLilleF‐59000France
| |
Collapse
|
9
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
10
|
Thomine S, Merlot S. Manganese matters: feeding manganese into the secretory system for cell wall synthesis. THE NEW PHYTOLOGIST 2021; 231:2107-2109. [PMID: 34237160 DOI: 10.1111/nph.17545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Sylvain Merlot
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| |
Collapse
|
11
|
Yang CH, Wang C, Singh S, Fan N, Liu S, Zhao L, Cao H, Xie W, Yang C, Huang CF. Golgi-localised manganese transporter PML3 regulates Arabidopsis growth through modulating Golgi glycosylation and cell wall biosynthesis. THE NEW PHYTOLOGIST 2021; 231:2200-2214. [PMID: 33454966 DOI: 10.1111/nph.17209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Golgi is a critical compartment for both the reutilisation of the essential micronutrient manganese (Mn) and its detoxification. However, whether Mn plays a role in the Golgi remains to be demonstrated in plants. We characterised the function of PML3, a member of the Unknown Protein Family UPF0016, in Mn transport and the regulation of plant growth, Golgi glycosylation and cell wall biosynthesis in Arabidopsis. We also investigated the relationship of PML3 with NRAMP2, a trans-Golgi network localised Mn transporter. PML3-GFP is preferentially localised in the cis-Golgi. PML3 can transport Mn to rescue the hypersensitivity of yeast mutant Δpmr1 to excess Mn. Two mutant alleles of PML3 displayed reduced plant growth and impaired seed development under Mn-deficient conditions. The pml3 mutants also showed impaired Golgi glycosylation and cell wall biosynthesis under Mn deficiency. Double mutations of PML3 and NRAMP2 showed improved plant growth compared with that of single mutants under Mn deficiency, implying that PML3 and NRAMP2 play opposite roles in the regulation of Golgi Mn levels. Our results suggest that PML3 mediates Mn uptake into the Golgi compartments, which is required for proper protein glycosylation and cell wall biosynthesis under Mn-deficient conditions.
Collapse
Affiliation(s)
- Chang-Hong Yang
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Somesh Singh
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ni Fan
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Liu
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Li Zhao
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hengliang Cao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenxiang Xie
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology and National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Zhang B, Zhang C, Liu C, Fu A, Luan S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100178. [PMID: 34027392 PMCID: PMC8132125 DOI: 10.1016/j.xplc.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells.
Collapse
Affiliation(s)
- Bin Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Congge Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
13
|
Hoecker N, Hennecke Y, Schrott S, Marino G, Schmidt SB, Leister D, Schneider A. Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:697848. [PMID: 34194462 PMCID: PMC8236900 DOI: 10.3389/fpls.2021.697848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 05/08/2023]
Abstract
The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.
Collapse
Affiliation(s)
- Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yvonne Hennecke
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Simon Schrott
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Giada Marino
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Massenspektrometrie von Biomolekülen an der LMU (MSBioLMU), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- *Correspondence: Anja Schneider,
| |
Collapse
|
14
|
Thines L, Stribny J, Morsomme P. From the Uncharacterized Protein Family 0016 to the GDT1 family: Molecular insights into a newly-characterized family of cation secondary transporters. MICROBIAL CELL 2020; 7:202-214. [PMID: 32743000 PMCID: PMC7380456 DOI: 10.15698/mic2020.08.725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Uncharacterized Protein Family 0016 (UPF0016) gathers poorly studied membrane proteins well conserved through evolution that possess one or two copies of the consensus motif Glu-x-Gly-Asp-(Arg/Lys)-(Ser/Thr). Members are found in many eukaryotes, bacteria and archaea. The interest for this protein family arose in 2012 when its human member TMEM165 was linked to the occurrence of Congenital Disorders of Glycosylation (CDGs) when harbouring specific mutations. Study of the UPF0016 family is undergone through the characterization of the bacterium Vibrio cholerae (MneA), cyanobacterium Synechocystis (SynPAM71), yeast Saccharomyces cerevisiae (Gdt1p), plant Arabidopsis thaliana (PAM71 and CMT1), and human (TMEM165) members. These proteins have all been identified as transporters of cations, more precisely of Mn2+, with an extra reported function in Ca2+ and/or H+ transport for some of them. Apart from glycosylation in humans, the UPF0016 members are required for lactation in humans, photosynthesis in plants and cyanobacteria, Ca2+ signaling in yeast, and Mn2+ homeostasis in the five aforementioned species. The requirement of the UPF0016 members for key physiological processes most likely derives from their transport activity at the Golgi membrane in human and yeast, the chloroplasts membranes in plants, the thylakoid and plasma membranes in cyanobacteria, and the cell membrane in bacteria. In the light of these studies on various UPF0016 members, this family is not considered as uncharacterized anymore and has been renamed the Gdt1 family according to the name of its S. cerevisiae member. This review aims at assembling and confronting the current knowledge in order to identify shared and distinct features in terms of transported molecules, mode of action, structure, etc., as well as to better understand their corresponding physiological roles.
Collapse
Affiliation(s)
- Louise Thines
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|