1
|
Zhao C, Cheng L, Guo Y, Hui W, Niu J, Song S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109285. [PMID: 39550990 DOI: 10.1016/j.plaphy.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The 'Xuxiang' kiwifruit, a leading cultivar in China known for its high quality and yield, experiences quality degradation due to vibration stress during postharvest transportation. This study simulated the postharvest transportation vibrations of 'Xuxiang' kiwifruits to investigate the effects on the fruit quality and physiology. Different vibration intensities (0.26, 0.79, and 1.5 m s-2) and durations (0, 24, 48, 72, and 96 h) were applied to analyze the quality, physiological and transcriptomic changes of fruits after vibration stress, as well as the association between quality deterioration, gene networks, and key genes. Results indicated that vibration stress significantly accelerated the deterioration of fruit quality and induced physiological changes. As vibration intensity and duration increased, there was a rapid decrease in fruit firmness and an increase in weight loss, soluble solid content, relative conductivity, ethylene production, respiratory rate, and malondialdehyde levels. The most severe deterioration in fruit quality occurred at a vibration intensity of 1.5 m s-2. Transcriptome sequencing analysis was conducted on samples from different durations of exposure to the 1.5 m s-2 vibration intensity. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses identified key genes associated with ethylene metabolism and softening. Weighted Gene Co-Expression Network Analysis (WGCNA) and correlation analysis further determined that 24 of these genes were regulated by vibrational stress, impacting ethylene metabolism and cell wall degradation. Vibration stress induced changes in genes related to ethylene metabolism and cell wall degradation, promoting lipid peroxidation and respiratory changes, which compromise cell membrane integrity and lead to quality deterioration. Compared with untreated fruits, vibration stress caused the quality deterioration, physiological changes and transcriptional regulation of kiwifruits, indicating that kiwifruits respond to vibration stress through multiple aspects. It proposes a fresh outlook on the understanding of the mechanism of transport vibration stress and further illustrates the importance of monitoring vibration intensity and duration as well as reducing vibration.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Linlin Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Shujie Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China.
| |
Collapse
|
2
|
Zhao M, Hu R, Lin Y, Yang Y, Chen Q, Li M, Zhang Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-Wide Analysis of Polygalacturonase Gene Family Reveals Its Role in Strawberry Softening. PLANTS (BASEL, SWITZERLAND) 2024; 13:1838. [PMID: 38999678 PMCID: PMC11244104 DOI: 10.3390/plants13131838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were identified in the octoploid strawberry genome, which were classified into three groups according to phylogenetic analysis. Subcellular localization prediction indicated that FaPGs are mostly localized to the plasma membrane, cytoplasm, and chloroplasts. Moreover, the expression of FaPGs during strawberry development and ripening of 'Benihoppe' and its softer mutant was estimated. The results showed that among all 75 FaPGs, most genes exhibited low expression across developmental stages, while two group c members (FxaC_21g15770 and FxaC_20g05360) and one group b member, FxaC_19g05040, displayed relatively higher and gradual increases in their expression trends during strawberry ripening and softening. FxaC_21g15770 was selected for subsequent silencing to validate its role in strawberry softening due to the fact that it exhibited the highest and most changed expression level across different developmental stages in 'Benihoppe' and its mutant. Silencing FxaC_21g15770 could significantly improve strawberry fruit firmness without affecting fruit color, soluble solids, cellulose, and hemicellulose. Conversely, silencing FxaC_21g15770 could significantly suppress the expression of other genes related to pectin degradation such as FaPG-like, FaPL, FaPME, FaCX, FaCel, FaGlu, FaXET, and FaEG. These findings provide basic information on the FaPG gene family for further functional research and indicate that FxaC_21g15770 plays a vital role in strawberry fruit softening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 625014, China; (M.Z.); (R.H.); (Y.L.); (Y.Y.); (Q.C.); (M.L.); (Y.Z.); (Y.Z.); (Y.W.); (W.H.); (X.W.); (H.T.)
| |
Collapse
|
3
|
Yi X, Chen W, Guan J, Zhu J, Zhang Q, Yang H, Yang H, Zhong S, Chen C, Tan F, Ren T, Luo P. Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata. Int J Mol Sci 2023; 24:16973. [PMID: 38069295 PMCID: PMC10707396 DOI: 10.3390/ijms242316973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (W.C.); (J.G.); (J.Z.); (Q.Z.); (H.Y.); (H.Y.); (S.Z.); (C.C.); (F.T.); (T.R.)
| |
Collapse
|
4
|
Tu J, Abid M, Luo J, Zhang Y, Yang E, Cai X, Gao P, Huang H, Wang Z. Genome-wide identification of the heat shock transcription factor gene family in two kiwifruit species. FRONTIERS IN PLANT SCIENCE 2023; 14:1075013. [PMID: 37799558 PMCID: PMC10548268 DOI: 10.3389/fpls.2023.1075013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
High temperatures have a significant impact on plant growth and metabolism. In recent years, the fruit industry has faced a serious threat due to high-temperature stress on fruit plants caused by global warming. In the present study, we explored the molecular regulatory mechanisms that contribute to high-temperature tolerance in kiwifruit. A total of 36 Hsf genes were identified in the A. chinensis (Ac) genome, while 41 Hsf genes were found in the A. eriantha (Ae) genome. Phylogenetic analysis revealed the clustering of kiwifruit Hsfs into three distinct groups (groups A, B, and C). Synteny analysis indicated that the expansion of the Hsf gene family in the Ac and Ae genomes was primarily driven by whole genome duplication (WGD). Analysis of the gene expression profiles revealed a close relationship between the expression levels of Hsf genes and various plant tissues and stress treatments throughout fruit ripening. Subcellular localization analysis demonstrated that GFP-AcHsfA2a/AcHsfA7b and AcHsfA2a/AcHsfA7b -GFP were localized in the nucleus, while GFP-AcHsfA2a was also observed in the cytoplasm of Arabidopsis protoplasts. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assay revealed that the majority of Hsf genes, especially AcHsfA2a, were expressed under high-temperature conditions. In conclusion, our findings establish a theoretical foundation for analyzing the potential role of Hsfs in high-temperature stress tolerance in kiwifruit. This study also offers valuable information to aid plant breeders in the development of heat-stress-resistant plant materials.
Collapse
Affiliation(s)
- Jing Tu
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Juan Luo
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Yi Zhang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Endian Yang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Xinxia Cai
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Zupeng Wang
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Guo T, Li J, Guo M, Yang Q, Dai X, Qiao X, Song Z, Tian C, Li Y, Ge H, Cheng J, Liang M. Low temperature inhibits pectin degradation by PpCBFs to prolong peach storage time. J Food Sci 2023; 88:3725-3736. [PMID: 37548624 DOI: 10.1111/1750-3841.16731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Low-temperature storage is a widely used method for peach fruit storage. However, the impact of PpCBFs on pectin degradation during low-temperature storage is unclear. As such, in this study, we stored the melting-flesh peach cultivar "Fuli" at low temperature (LT, 6°C) and room temperature (RT, 25°C) to determine the effect of different temperatures on its physiological and biochemical changes. Low-temperature storage can inhibit the softening of "Fuli" peaches by maintaining the stability of the cell wall. It was found that the contents of water-soluble pectin and ionic-soluble pectin in peach fruit stored at RT were higher than those stored at LT. The enzyme activities of polygalacturonase (PG), pectate lyase (PL), and pectin methylesterase (PME) were all inhibited by LT. The expressions of PpPME3, PpPL2, and PpPG were closely related to fruit firmness, but PpCBF2 and PpCBF3 showed higher expression levels at LT than RT. The promoters of PpPL2 and PpPG contain the DER motif, which suggested that PpCBF2 and PpCBF3 might negatively regulate their expression by directly binding to their promoters. These results indicated that LT may maintain firmness by activating PpCBFs to repress pectin-degradation-related enzyme genes during storage.
Collapse
Affiliation(s)
- Tingting Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Meiling Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Qi Yang
- Linyi Inspection and Testing Center, Linyi, Shandong, China
| | - Xiaonan Dai
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xuqiang Qiao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Changping Tian
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Yanju Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, China
| | - Hang Ge
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
| | - Meixia Liang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong, China
- College of Agriculture, Ludong University, Yantai, Shandong, China
| |
Collapse
|
6
|
Wang Y, Fan Z, Zhai Y, Huang H, Vainstein A, Ma H. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L.) fruit softening. BMC PLANT BIOLOGY 2023; 23:320. [PMID: 37316788 DOI: 10.1186/s12870-023-04315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.
Collapse
Affiliation(s)
- Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
He P, Zhang J, Lv Z, Cui P, Xu X, George MS, Lu G. Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato. BMC PLANT BIOLOGY 2023; 23:300. [PMID: 37270475 PMCID: PMC10239142 DOI: 10.1186/s12870-023-04272-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified. RESULTS In this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes. CONCLUSION A total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
Collapse
Affiliation(s)
- Peiwen He
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jingzhen Zhang
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zunfu Lv
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Peng Cui
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ximing Xu
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Melvin Sidikie George
- Crop Science Department, Njala University, Njala Campus. Private Mail bag, Freetown, 999127, Sierra Leone
| | - Guoquan Lu
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Mao J, Gao Z, Lin M, Zhang X, Ning X, Gong X, Lu Y, Chen L, Wang X. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2023; 14:1120166. [PMID: 36959943 PMCID: PMC10028114 DOI: 10.3389/fpls.2023.1120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Kiwifruit is a climacteric fruit, in which the accumulation of flavor substances mainly occurs at the postharvest ripening stage. However, the dynamic changes in metabolite composition remain poorly understood. Here, targeted multi-platform metabolome analysis based on GC-MS and UPLC-MS/MS and enzyme activity analysis were performed at different postharvest ripening stages of kiwifruit. A total of 12 soluble sugars and 31 organic acids were identified. The main soluble sugars are sucrose, glucose and fructose, which exhibited similar variation tendencies along with the extension of ripening. The main organic acids are citric acid, quinic acid and malic acid, which showed different variation patterns. A total of 48 energy metabolites were identified, which were classified into two groups based on the content variation. The content of substances related to the respiratory metabolic pathway decreased gradually along with postharvest ripening, and there was obvious accumulation of downstream products such as amino acids at the late ripening stage. A total of 35 endogenous hormones were identified, among which seven cytokinins were highly accumulated at the later stage of softening. We further investigated the dynamic changes in the activities of 28 ripening-related enzymes. As a result, the activities of 13 enzymes were highly correlated with changes in starch, total pectin, and soluble sugars, and those of seven enzymes were closely associated with the change in firmness. In conclusion, this study comprehensively describes the dynamic changes in soluble sugars, organic acids, hormones, energy substances, and ripening-related enzyme activities during kiwifruit postharvest ripening, and provides a theoretical basis for the postharvest quality improvement of kiwifruit.
Collapse
Affiliation(s)
- Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Xiaoli Zhang
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xinyi Ning
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Yupeng Lu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Lai R, Wu X, Feng X, Gao M, Long Y, Wu R, Cheng C, Chen Y. Identification and Characterization of Long Non-Coding RNAs: Implicating Insights into Their Regulatory Role in Kiwifruit Ripening and Softening during Low-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2023; 12:1070. [PMID: 36903929 PMCID: PMC10005093 DOI: 10.3390/plants12051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are crucial players regulating many biological processes in plants. However, limited knowledge is available regarding their roles in kiwifruit ripening and softening. In this study, using lncRNA-seq technology, 591 differentially expressed (DE) lncRNAs (DELs) and 3107 DE genes (DEGs) were identified from kiwifruit stored at 4 °C for 1, 2, and 3 weeks in comparison with non-treated control fruits. Of note, 645 DEGs were predicted to be targets of DELs (DEGTLs), including some DE protein-coding genes (such as β-amylase and pectinesterase). DEGTL-based GO enrichment analysis revealed that these genes were significantly enriched in cell wall modification and pectinesterase activity in 1 W vs. CK and 3 W vs. CK, which might be closely related to the fruit softening during low-temperature storage. Moreover, KEGG enrichment analysis revealed that DEGTLs were significantly associated with starch and sucrose metabolism. Our study revealed that lncRNAs play critical regulatory roles in kiwifruit ripening and softening under low-temperature storage, mainly by mediating the expression of starch and sucrose metabolism and cell wall modification related genes.
Collapse
Affiliation(s)
- Ruilian Lai
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaopei Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xin Feng
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minxia Gao
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yu Long
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Rujian Wu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yiting Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
10
|
Nie H, Shi Y, Geng X, Xing G. CRISRP/Cas9-Mediated Targeted Mutagenesis of Tomato Polygalacturonase Gene ( SlPG) Delays Fruit Softening. FRONTIERS IN PLANT SCIENCE 2022; 13:729128. [PMID: 35665160 PMCID: PMC9162796 DOI: 10.3389/fpls.2022.729128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/21/2022] [Indexed: 06/12/2023]
Abstract
Polygalacturonase (PG) gene has been documented as a key candidate for the improvement of fruit firmness, which is a target trait for tomato production because it facilitates transportation and storage. To reduce the expression of the PG gene, most of the elite commercial tomato varieties were obtained by RNA interference technology. However, this approach of producing commercialized tomatoes by integration of the exogenous gene is controversial. In this work, CRISPR/Cas9 technology was used to induce the targeted mutagenesis of the SlPG gene to delay the softening of tomato fruit. Results showed that the SlPG gene was frameshift mutated by 4 bp deletion, 10 bp deletion, and 1 bp insertion, which generated premature translation termination codons. Compared with wild-type (WT), homozygous T1-generation tomato plants exhibited late fruit softening under natural conditions. Consistent with this phenomenon, the firmness value of WT fruit was lower in slpg mutant fruit, and the physiological loss of water was higher. Collectively, these data demonstrate that the mutation of the SlPG gene delays tomato fruit softening. More importantly, 8 out of 20 transgene-free tomato plants, which were homozygous for null alleles of SlPG, were separated in the T3-generation of line slpgT2-#2. This transgene-free slpg may provide materials for more in-depth research of SlPG functions and the molecular mechanism of fruit softening in tomatoes.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture/Collaborative Innovation Center of Improving Quality and Increasing Profits for Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Yu Shi
- College of Horticulture/Collaborative Innovation Center of Improving Quality and Increasing Profits for Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoming Xing
- College of Horticulture/Collaborative Innovation Center of Improving Quality and Increasing Profits for Protected Vegetables in Shanxi, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
11
|
Characterization and Identification of a Ripening-Related Gene AaPG18 in Actinidia arguta. Int J Mol Sci 2022; 23:ijms23052597. [PMID: 35269737 PMCID: PMC8910643 DOI: 10.3390/ijms23052597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Actinidia arguta (A. arguta) is a kind of climacteric fruit that quickly softens and limits fruit shelf-life and commercial value. Therefore, it is of great significance to develop kiwifruit genotypes with an extended shelf-life of fruit. However, the ripening and softening mechanisms remain unclear in A. arguta. Here, we demonstrated that a key polygalacturonase (PG)-encoding gene AaPG18 was involved in A. arguta ripening through the degradation of the cell wall. Fruits were harvested at three developmental stages (S1, S2, and S3) for high-throughput transcriptome sequencing, based on which two candidate transcripts c109562_g1 and c111961_g1 were screened. The genome-wide identification of the PG gene family assigned c109562_g1 and c111961_g1 to correspond to AaPG4 and AaPG18, respectively. The expression profiles of candidate genes at six preharvest stages of fruit showed significantly higher expression levels of AaPG18 than AaPG4, indicating AaPG18 might be a key gene during fruit ripening processes. The subcellular localization displayed AaPG18 was located at the cytoplasmic membrane. The transient overexpression of AaPG18 in strawberry and the following morphological observation suggested AaPG18 played a key role in maintaining the stability of cell morphology. The homologous transient transformation in A. arguta “RB-4” proved the crucial function of AaPG18 in fruit ripening processes by causing the rapid redness of the fruit, which was an indicator of fruit maturity. All in all, our results identified AaPG18 as a key candidate gene involved in cell wall degeneration, which provides a basis for the subsequent exploration of the molecular mechanisms underlying the ripening and softening of A. arguta fruit.
Collapse
|
12
|
Zhang H, Zhang Y, Wang P, Zhang J. Transcriptome profiling of genes associated with fruit firmness in the melon variety 'Baogua' ( Cucumis melo ssp. agrestis Jeffrey). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:301-313. [PMID: 35400878 PMCID: PMC8943068 DOI: 10.1007/s12298-022-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Fruit firmness is an important trait of melons due to its effect on fresh fruit consumption, storage, and transport. However, information on the expression of genes influencing the fruit firmness of 'Baogua' (BG) melon (Cucumis melo ssp. agrestis Jeffrey) remains rare. This study aimed to identify the key genes associated with the firmness of BG fruit sampled at 14 and 28 days after pollination (dap) via transcriptome sequencing. A total of 1113 up-regulated and 2224 down-regulated differentially expressed genes (DEGs) were identified. The main Gene Ontology terms assigned to the DEGs were phosphotransferase activity, alcohol group as acceptor, protein phosphorylation, and protein kinase activity. The enriched KEGG pathways involving the DEGs were starch and sucrose metabolism, diterpenoid biosynthesis, plant hormone signal transduction, and MAPK signaling pathway-plant. In addition, qRT-PCR verified that four GAL genes, namely, CmGAL1-4, were differentially expressed at 0, 7, 14, 21, and 28 dap. Our data revealed that CmGAL1 expression was highest at 21 dap. However, the expression levels of CmGAL2-4 were highest at 14 dap. The sequence of CmGAL1 was similar to the sequences of homologs from melon and cucumber. Subcellular localization analysis revealed CmGAL1 was located in the cell membrane and cytoplasm. Our findings implied that fruit development at 14 dap, which is a key time-point, varies considerably from fruit development at 28 dap. Our present study provides new information on the genes associated with BG fruit firmness and help improve the storage and transport of BG fruit prior to processing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01131-5.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Jianghuai Horticulture Seeds Co., Ltd, Huaibei, 235000 Anhui Province China
| | - Yan Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| |
Collapse
|
13
|
Changes in Homogalacturonan Metabolism in Banana Peel during Fruit Development and Ripening. Int J Mol Sci 2021; 23:ijms23010243. [PMID: 35008668 PMCID: PMC8745247 DOI: 10.3390/ijms23010243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.
Collapse
|
14
|
Zhang QY, Ge J, Liu XC, Wang WQ, Liu XF, Yin XR. Consensus co-expression network analysis identifies AdZAT5 regulating pectin degradation in ripening kiwifruit. J Adv Res 2021; 40:59-68. [PMID: 36100334 PMCID: PMC9481940 DOI: 10.1016/j.jare.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
CCNA was advanced by introducing physiological traits. Six cell wall genes and four transcription factors were identified for pectin degradation. A series of experiments validated the regulations of AdZAT5 on AdPL5 and Adβ-Gal5. CCNA would be powerful for phishing the unknown regulators with higher efficiency and accuracy.
Introduction Cell wall degradation and remodeling is the key factor causing fruit softening during ripening. Objectives To explore the mechanism underlying postharvest cell wall metabolism, a transcriptome analysis method for more precious prediction on functional genes was needed. Methods Kiwifruits treated by ethylene (a conventional and effective phytohormone to accelerate climacteric fruit ripening and softening as kiwifruits) or air were taken as materials. Here, Consensus Coexpression Network Analysis (CCNA), a procedure evolved from Weighted Gene Co-expression Network Analysis (WGCNA) package in R, was applied and generated 85 consensus clusters from twelve transcriptome libraries. Advanced and comprehensive modifications were achieved by combination of CCNA and WGCNA with introduction of physiological traits, including firmness, cell wall materials, cellulose, hemicellulose, water soluble pectin, covalent binding pectin and ionic soluble pectin. Results As a result, six cell wall metabolisms related structural genes AdGAL1, AdMAN1, AdPL1, AdPL5, Adβ-Gal5, AdPME1 and four transcription factors AdZAT5, AdDOF3, AdNAC083, AdMYBR4 were identified as hub candidate genes for pectin degradation. Dual-luciferase system and electrophoretic mobility shift assays validated that promoters of AdPL5 and Adβ-Gal5 were recognized and trans-activated by transcription factor AdZAT5. The relatively higher enzyme activities of PL and β-Gal were observed in ethylene treated kiwifruit, further emphasized the critical roles of these two pectin related genes for fruit softening. Moreover, stable transient overexpression AdZAT5 in kiwifruit significantly enhanced AdPL5 and Adβ-Gal5 expression, which confirmed the in vivo regulations between transcription factor and pectin related genes. Conclusion Thus, modification and application of CCNA would be powerful for the precious phishing the unknown regulators. It revealed that AdZAT5 is a key factor for pectin degradation by binding and regulating effector genes AdPL5 and Adβ-Gal5.
Collapse
|
15
|
Zhai Z, Feng C, Wang Y, Sun Y, Peng X, Xiao Y, Zhang X, Zhou X, Jiao J, Wang W, Du B, Wang C, Liu Y, Li T. Genome-Wide Identification of the Xyloglucan endotransglucosylase/Hydrolase ( XTH) and Polygalacturonase ( PG) Genes and Characterization of Their Role in Fruit Softening of Sweet Cherry. Int J Mol Sci 2021; 22:ijms222212331. [PMID: 34830211 PMCID: PMC8621145 DOI: 10.3390/ijms222212331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Fruit firmness is an important economical trait in sweet cherry (Prunus avium L.) where the change of this trait is related to cell wall degradation. Xyloglucan endotransglycosylase/hydrolase (XTH) and polygalacturonases (PGs) are critical cell-wall-modifying enzymes that occupy a crucial position in fruit ripening and softening. Herein, we identified 18 XTHs and 45 PGs designated PavXTH1-18 and PavPG1-45 based on their locations in the genome of sweet cherry. We provided a systematical overview of PavXTHs and PavPGs, including phylogenetic relationships, conserved motifs, and expression profiling of these genes. The results showed that PavXTH14, PavXTH15 and PavPG38 were most likely to participated in fruit softening owing to the substantial increment in expression during fruit development and ripening. Furthermore, the phytohormone ABA, MeJA, and ethephon significantly elevated the expression of PavPG38 and PavXTH15, and thus promoted fruit softening. Importantly, transient expression PavXTH14, PavXTH15 and PavPG38 in cherry fruits significantly reduced the fruit firmness, and the content of various cell wall components including hemicellulose and pectin significantly changed correspondingly in the transgenic fruit. Taken together, these results present an extensive analysis of XTHs and PGs in sweet cherry and provide potential targets for breeding softening-resistant sweet cherry cultivars via manipulating cell wall-associated genes.
Collapse
|
16
|
Genome-Wide Identification and Characterization of Polygalacturonase Gene Family in Maize ( Zea mays L.). Int J Mol Sci 2021; 22:ijms221910722. [PMID: 34639068 PMCID: PMC8509529 DOI: 10.3390/ijms221910722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.
Collapse
|
17
|
Li C, Ju J, Xie Y, Yu H, Guo Y, Yao W, Qian H. Effects of interactions between polygalacturonase and pesticide residues during enzymatic hydrolysis on the yield of apple juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening. Sci Rep 2021; 11:1671. [PMID: 33462344 PMCID: PMC7814023 DOI: 10.1038/s41598-021-81155-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
Collapse
|