1
|
Cai L, Xiang R, Jiang Y, Li W, Yang Q, Gan G, Li W, Yu C, Wang Y. Genome-Wide Identification and Expression Profiling Analysis of the CCT Gene Family in Solanum lycopersicum and Solanum melongena. Genes (Basel) 2024; 15:1385. [PMID: 39596585 PMCID: PMC11593657 DOI: 10.3390/genes15111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
CCT family genes play crucial roles in photoperiodic flowering and environmental stress response; however, there are limited reports in Solanum species with considerable edible and medicinal value. In this study, we conducted genome-wide characterization and expression profiling analysis of the CCT gene family in two Solanum species: tomato (Solanum lycopersicum L.) and eggplant (Solanum melongena L.). A total of 27 SlCCT and 29 SmCCT genes were identified in the tomato and eggplant genomes, respectively. Phylogenetic analysis showed that the CCT gene family could be divided into six subgroups (COL I, COL II, COL III, PRR, CMF I, and CMF II) in Oryza sativa and Arabidopsis thaliana. The similarity in the distribution of exon-intron structures and conserved motifs within the same subgroup indicated the conservation of SlCCT and SmCCT genes during evolution. Intraspecies collinearity analysis revealed that six pairs of SlCCT genes and seven pairs of SmCCT genes showed collinear relationships, suggesting that segmental duplication played a vital role in the expansion of the SlCCT and SmCCT family genes. Cis-acting element prediction indicated that SlCCT and SmCCT were likely to be involved in multiple responses stimulated by light, phytohormones, and abiotic stress. RT-qPCR analysis revealed that SmCCT15, SlCCT6/SlCCT14, and SlCCT23/SmCCT9 responded significantly to salt, drought, and cold stress, respectively. Our comprehensive analysis of the CCT gene family in tomato and eggplant provides a basis for further studies on its molecular role in regulating flowering and resistance to abiotic stress, and provides valuable candidate gene resources for tomato and eggplant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (R.X.); (Y.J.); (W.L.); (Q.Y.); (G.G.); (W.L.); (C.Y.)
| |
Collapse
|
2
|
Lan Y, Song Y, Liu M, Luo D. Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice. PLANTA 2024; 260:58. [PMID: 39039384 DOI: 10.1007/s00425-024-04475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
MAIN CONCLUSION A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.
Collapse
Affiliation(s)
- Yanhong Lan
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengjia Liu
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dening Luo
- School of Automation, Chengdu University of Information Technology, Chengdu, 610255, China.
| |
Collapse
|
3
|
Xu Y, Yao H, Lan Y, Cao Y, Xu Q, Xu H, Qiao D, Cao Y. Genome-Wide Identification and Characterization of CCT Gene Family from Microalgae to Legumes. Genes (Basel) 2024; 15:941. [PMID: 39062720 PMCID: PMC11275407 DOI: 10.3390/genes15070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The CCT (CO, COL and TOC1) gene family has been elucidated to be involved in the functional differentiation of the products in various plant species, but their specific mechanisms are poorly understood. In the present investigation, we conducted a genome-wide identification and phylogenetic analysis of CCT genes from microalgae to legumes. A total of 700 non-redundant members of the CCT gene family from 30 species were identified through a homology search. Phylogenetic clustering with Arabidopsis and domain conservation analysis categorized the CCT genes into three families. Multiple sequence alignment showed that the CCT domain contains important amino acid residues, and each CCT protein contains 24 conserved motifs, as demonstrated by the motif analysis. Whole-genome/segment duplication, as well as tandem duplication, are considered to be the driving forces in the evolutionary trajectory of plant species. This comprehensive investigation into the proliferation of the CCT gene family unveils the evolutionary dynamics whereby WGD/segment duplication is the predominant mechanism contributing to the expansion of the CCT genes. Meanwhile, the examination of the gene expression patterns revealed that the expression patterns of CCT genes vary in different tissues and at different developmental stages of plants, with high expression in leaves, which is consistent with the molecular regulation of flowering in photosynthesis by CCT. Based on the protein-protein interaction analysis of CCT genes in model plants, we propose that the CCT gene family synergistically regulates plant development and flowering with light-signaling factors (PHYs and PIFs) and MYB family transcription factors. Understanding the CCT gene family's molecular evolution enables targeted gene manipulation for enhanced plant traits, including optimized flowering and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China (Y.C.)
| |
Collapse
|
4
|
Dong W, Li D, Zhang L, Tao P, Zhang Y. Flowering-associated gene expression and metabolic characteristics in adzuki bean ( Vigna angularis L.) with different short-day induction periods. PeerJ 2024; 12:e17716. [PMID: 39035158 PMCID: PMC11260412 DOI: 10.7717/peerj.17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Background The adzuki bean is a typical short-day plant and an important grain crop that is widely used due to its high nutritional and medicinal value. The adzuki bean flowering time is affected by multiple environmental factors, particularly the photoperiod. Adjusting the day length can induce flower synchronization in adzuki bean and accelerate the breeding process. In this study, we used RNA sequencing analysis to determine the effects of different day lengths on gene expression and metabolic characteristics related to adzuki bean flowering time. Methods 'Tangshan hong xiao dou' was used as the experimental material in this study and field experiments were conducted in 2022 using a randomized block design with three treatments: short-day induction periods of 5 d (SD-5d), 10 d (SD-10d), and 15 d (SD-15d). Results A total of 5,939 differentially expressed genes (DEGs) were identified, of which 38.09% were up-regulated and 23.81% were down-regulated. Gene ontology enrichment analysis was performed on the target genes to identify common functions related to photosystems I and II. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified two pathways involved in the antenna protein and circadian rhythm. Furthermore, florescence was promoted by down-regulating genes in the circadian rhythm pathway through the blue light metabolic pathway; whereas, antenna proteins promoted flowering by enhancing the reception of light signals and accelerating electron transport. In these two metabolic pathways, the number of DEGs was the greatest between the SD-5d VS SD-15d groups. Real-time reverse transcription‒quantitative polymerase chain reaction analysis results of eight DEGs were consistent with the sequencing results. Thus, the sequencing results were accurate and reliable and eight genes were identified as candidates for the regulation of short-day induction at the adzuki bean seedling stage. Conclusions Short-day induction was able to down-regulate the expression of genes related to flowering according to the circadian rhythm and up-regulate the expression of certain genes in the antenna protein pathway. The results provide a theoretical reference for the molecular mechanism of short-day induction and multi-level information for future functional studies to verify the key genes regulating adzuki bean flowering.
Collapse
Affiliation(s)
- Weixin Dong
- College of Agronomy and Medical, Hebei Open University, Shijiazhuang, Hebei, China
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Dongxiao Li
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lei Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong, China
| | - Peijun Tao
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuechen Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
5
|
Yu L, Xia J, Jiang R, Wang J, Yuan X, Dong X, Chen Z, Zhao Z, Wu B, Zhan L, Zhang R, Tang K, Li J, Xu X. Genome-Wide Identification and Characterization of the CCT Gene Family in Rapeseed ( Brassica napus L.). Int J Mol Sci 2024; 25:5301. [PMID: 38791340 PMCID: PMC11121423 DOI: 10.3390/ijms25105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The CCT gene family is present in plants and is involved in biological processes such as flowering, circadian rhythm regulation, plant growth and development, and stress resistance. We identified 87, 62, 46, and 40 CCTs at the whole-genome level in B. napus, B. rapa, B. oleracea, and A. thaliana, respectively. The CCTs can be classified into five groups based on evolutionary relationships, and each of these groups can be further subdivided into three subfamilies (COL, CMF, and PRR) based on function. Our analysis of chromosome localization, gene structure, collinearity, cis-acting elements, and expression patterns in B. napus revealed that the distribution of the 87 BnaCCTs on the chromosomes of B. napus was uneven. Analysis of gene structure and conserved motifs revealed that, with the exception of a few genes that may have lost structural domains, the majority of genes within the same group exhibited similar structures and conserved domains. The gene collinearity analysis identified 72 orthologous genes, indicating gene duplication and expansion during the evolution of BnaCCTs. Analysis of cis-acting elements identified several elements related to abiotic and biotic stress, plant hormone response, and plant growth and development in the promoter regions of BnaCCTs. Expression pattern and protein interaction network analysis showed that BnaCCTs are differentially expressed in various tissues and under stress conditions. The PRR subfamily genes have the highest number of interacting proteins, indicating their significant role in the growth, development, and response to abiotic stress of B. napus.
Collapse
Affiliation(s)
- Liyiqi Yu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Jichun Xia
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Rujiao Jiang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Jiajia Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Xiaolong Yuan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Xinchao Dong
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Zhenjie Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Zizheng Zhao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Boen Wu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Lanlan Zhan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Ranfeng Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Kang Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xinfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (L.Y.); (J.X.); (R.J.); (J.W.); (X.Y.); (X.D.); (Z.C.); (Z.Z.); (B.W.); (L.Z.); (R.Z.); (K.T.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
6
|
Chen L, Wu X, Zhang M, Yang L, Ji Z, Chen R, Cao Y, Huang J, Duan Q. Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1118. [PMID: 38674527 PMCID: PMC11054530 DOI: 10.3390/plants13081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.
Collapse
Affiliation(s)
- Luhan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Meiqi Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Lin Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Rui Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| | - Jiabao Huang
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (L.C.); (X.W.); (M.Z.); (L.Y.); (Z.J.); (R.C.); (Y.C.)
| |
Collapse
|
7
|
Chen H, Zhang S, Du K, Kang X. Genome-wide identification, characterization, and expression analysis of CCT transcription factors in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108101. [PMID: 37922648 DOI: 10.1016/j.plaphy.2023.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The CCT [CONSTANS (CO), CO-like, and TIMING OF CAB EXPRESSION1 (TOC1)] gene family is involved in photoperiodic flowering and adaptation to different environments. In this study, 39 CCT family genes from the poplar genome were identified and characterized, including 18 COL, 7 PRR, and 14 CMF TFs. Phylogenetics analysis showed that the PtrCCT gene family could be classified into five classes (Classes I-V) that have close relationships with Arabidopsis thaliana. Eight pairs of PtrCCTs had collinear relationships through interchromosomal synteny analysis in poplar, suggesting segmental duplication played a vital role in the expansion of the poplar CCT gene family. Besides, synteny analyses of the CCT members among poplar and different species provided more clues for PtrCCT gene family evolution. Cis-acting elements in the promoters of PtrCCTs predicted their involvement in light responses, hormone responses, biotic/abiotic stress responses, and plant growth and development. Eight members of the PpnCCT gene family were differentially expressed in the apical buds and leaves of triploid poplar compared to diploids. We then focused on PpnCCT39 upregulated in triploid poplars and showed that PpnCCT39 was localized in the nucleus, chloroplast, and cytoplasm and could interact with CLPP1 in the chloroplast. Overexpression of PpnCCT39 in poplar increased chlorophyll contents and enhanced photosynthetic rate. This study provided comprehensive information for the CCT gene family and set up a basis for its function identification in poplar.
Collapse
Affiliation(s)
- Hao Chen
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Shuwen Zhang
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Kang Du
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Xiangyang Kang
- National Key Laboratory of Forest Tree Genetics and Breeding, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Genome-Wide Characterization Analysis of CCT Genes in Raphanus sativus and Their Potential Role in Flowering and Abiotic Stress Response. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CCT genes play vital roles in flowering, plant growth, development, and response to abiotic stresses. Although they have been reported in many plants, the characterization and expression pattern of CCT genes is still limited in R. sativus. In this study, a total of 58 CCT genes were identified in R. sativus. Phylogenetic tree, gene structure, and conserved domains revealed that all CCT genes were classified into three groups: COL, CMF, and PRR. Genome-wide identification and evolutionary analysis showed that segmental duplication expanded the CCT gene families considerably, with the LF subgenome retaining more CCT genes. We observed strong purifying selection pressure for CCT genes. RsCCT genes showed tissue specificity, and some genes (such as RsCCT22, RsCCT36, RsCCT42 and RsCCT51) were highly expressed in flowers. Promoter cis-elements and RNA-seq data analysis showed that RsCCT genes could play roles in controlling flowering through the photoperiodic pathway and vernalization pathway. The expression profiles of RsCCT genes under Cd, Cr, Pb, and heat and salt stresses revealed that many RsCCT genes could respond to one or more abiotic stresses. Our findings could provide essential information for further studies on the function of RsCCT genes.
Collapse
|
9
|
Liu Z, Liu JL, An L, Wu T, Yang L, Cheng YS, Nie XS, Qin ZQ. Genome-wide analysis of the CCT gene family in Chinese white pear (Pyrus bretschneideri Rehd.) and characterization of PbPRR2 in response to varying light signals. BMC PLANT BIOLOGY 2022; 22:81. [PMID: 35196984 PMCID: PMC8864873 DOI: 10.1186/s12870-022-03476-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Canopy architecture is critical in determining the light environment and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Two CCT genes, the orthologues of AtPRR5 in pear, have been reported to be strongly correlated with photosynthetic performance under distinct canopy microclimates. However, knowledge concerning the specific expression patterns and roles of pear CCT family genes (PbCCTs) remains very limited. The key roles played by PbCCTs in the light response led us to examine this large gene family in more detail. RESULTS Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated that these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that whole-genome duplication/segmental duplication events played a crucial role in the expansion of the CCT family in pear and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying light signals. Additionally, transient overexpression of PbPRR2 in tobacco leaves resulted in inhibition of photosynthetic performance, suggesting its possible involvement in the repression of photosynthesis. CONCLUSIONS This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of PbCCTs to uncover their biological roles in the light response.
Collapse
Affiliation(s)
- Zheng Liu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jia-Li Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lin An
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Wu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Li Yang
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yin-Sheng Cheng
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xian-Shuang Nie
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Qi Qin
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
10
|
Zhang H, Jiao B, Dong F, Liang X, Zhou S, Wang H. Genome-wide identification of CCT genes in wheat (Triticum aestivum L.) and their expression analysis during vernalization. PLoS One 2022; 17:e0262147. [PMID: 34986172 PMCID: PMC8730456 DOI: 10.1371/journal.pone.0262147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous CCT genes are known to regulate various biological processes, such as circadian rhythm regulation, flowering, light signaling, plant development, and stress resistance. The CCT gene family has been characterized in many plants but remains unknown in the major cereal wheat (Triticum aestivum L.). Extended exposure to low temperature (vernalization) is necessary for winter wheat to flower successfully. VERNALIZATION2 (VRN2), a specific CCT-containing gene, has been proved to be strongly associated with vernalization in winter wheat. Mutation of all VRN2 copies in three subgenomes results in the eliminated demands of low temperature in flowering. However, no other CCT genes have been reported to be associated with vernalization to date. The present study screened CCT genes in the whole wheat genome, and preliminarily identified the vernalization related CCT genes through expression analysis. 127 CCT genes were identified in three subgenomes of common wheat through a hidden Markov model-based method. Based on multiple alignment, these genes were grouped into 40 gene clusters, including the duplicated gene clusters TaCMF6 and TaCMF8, each tandemly arranged near the telomere. The phylogenetic analysis classified these genes into eight groups. The transcriptome analysis using leaf tissues collected before, during, and after vernalization revealed 49 upregulated and 31 downregulated CCT genes during vernalization, further validated by quantitative real-time PCR. Among the differentially expressed and well-investigated CCT gene clusters analyzed in this study, TaCMF11, TaCO18, TaPRR95, TaCMF6, and TaCO16 were induced during vernalization but decreased immediately after vernalization, while TaCO1, TaCO15, TaCO2, TaCMF8, and TaPPD1 were stably suppressed during and after vernalization. These data imply that some vernalization related CCT genes other than VRN2 may exist in wheat. This study improves our understanding of CCT genes and provides a foundation for further research on CCT genes related to vernalization in wheat.
Collapse
Affiliation(s)
- HongWei Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bo Jiao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - FuShuang Dong
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - XinXia Liang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Shuo Zhou
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| | - HaiBo Wang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
- * E-mail: (SZ); (HBW)
| |
Collapse
|
11
|
The Papain-like Cysteine Protease HpXBCP3 from Haematococcus pluvialis Involved in the Regulation of Growth, Salt Stress Tolerance and Chlorophyll Synthesis in Microalgae. Int J Mol Sci 2021; 22:ijms222111539. [PMID: 34768970 PMCID: PMC8583958 DOI: 10.3390/ijms222111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.
Collapse
|
12
|
Circadian Rhythms in Legumes: What Do We Know and What Else Should We Explore? Int J Mol Sci 2021; 22:ijms22094588. [PMID: 33925559 PMCID: PMC8123782 DOI: 10.3390/ijms22094588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light–dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed “poor man’s meat”.
Collapse
|
13
|
Peng X, Tun W, Dai SF, Li JY, Zhang QJ, Yin GY, Yoon J, Cho LH, An G, Gao LZ. Genome-Wide Analysis of CCT Transcript Factors to Identify Genes Contributing to Photoperiodic Flowering in Oryza rufipogon. FRONTIERS IN PLANT SCIENCE 2021; 12:736419. [PMID: 34819938 PMCID: PMC8606741 DOI: 10.3389/fpls.2021.736419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 05/03/2023]
Abstract
Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.
Collapse
Affiliation(s)
- Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Win Tun
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Shuang-feng Dai
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jia-yue Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Qun-jie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Guo-ying Yin
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Jinmi Yoon
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Lae-hyeon Cho
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Gynheung An
- Crop Biotech Institute, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- *Correspondence: Gynheung An,
| | - Li-zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
- Li-zhi Gao,
| |
Collapse
|