1
|
Olajiire-Ajayi BL, Akintola OO, Thomas E. Assessment of selected tree species as phytoremediation agents in polluted soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-10. [PMID: 39324404 DOI: 10.1080/15226514.2024.2404169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The study investigates the ability of selected tree species to absorb heavy metals (Pb, Ni, Zn) from polluted soils. Seedlings of Adansonia digitata (P1), Jatropha curcas (P2), and Hildegardia barteri (P3) were transplanted into polythene pots with soils from a dumpsite (T1), highway (T2), industrial area (T3), and farmland (T4), forming a 3x4 factorial experiment replicated five times in a Completely Randomized Block Design. Pre-sowing analysis showed T1 and T2 had the highest Pb and Zn concentrations, T3 had the highest Ni, and T4 had the lowest heavy metal concentrations. After 12 weeks, heavy metal concentrations decreased in all soils. P1 concentrated metals in the root, P2 in the shoot, and P3 in various plant parts, with significant differences between species. P2 was identified as an effective phytoextractor for Pb and Zn (TF > 1), and P3 for Ni. All species showed potential for phytostabilization. The study concludes that these species are viable options for phytoremediation of heavy metals in contaminated soils.
Collapse
Affiliation(s)
- B L Olajiire-Ajayi
- Forestry and Environmental Technology Department, Federal College of Forestry, Ibadan, Nigeria
| | - O O Akintola
- Forestry and Environmental Technology Department, Federal College of Forestry, Ibadan, Nigeria
| | - E Thomas
- Geography Department, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Testa G, Ciaramella BR, Fernando AL, Kotoula D, Scordia D, Gomes LA, Cosentino SL, Alexopoulou E, Papazoglou EG. Harnessing Lignocellulosic Crops for Phytomanagement of Contaminated Soils: A Multi-Country Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2671. [PMID: 39409541 PMCID: PMC11478524 DOI: 10.3390/plants13192671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
The dwindling availability of agricultural land, caused by factors such as rapid population growth, urban expansion, and soil contamination, has significantly increased the pressure on food production. To address this challenge, cultivating non-food crops on contaminated land has emerged as a promising solution. This approach not only frees up fertile soil for food production but also mitigates human exposure to contaminants. This work aimed to examine the impact of soil contamination with Cd, Pb, Ni, and Zn on the growth, productivity, metal accumulation, and the tolerance of five lignocellulosic non-food crops: switchgrass (Panicum virgatum L.), biomass sorghum (Sorghum bicolor L. Moench), giant reed (Arundo donax L.), African fodder cane (Saccharum spontaneum L. spp. aegyptiacum Willd. Hackel), and miscanthus (Miscanthus × giganteus Greef et Deu.). A two-year pot experiment was conducted in Greece, Italy, and Portugal, following the same protocols and applying various levels of metals: Cd (0, 4, 8 mg kg-1), Pb and Zn (0, 450, 900 mg kg-1), and Ni (0, 110, 220 mg kg-1). The experimental design was completely randomized, with three replicates for each treatment. The results showed that switchgrass and sorghum generally maintained their height and productivity under Cd and Pb stress but were adversely affected by high Zn and Ni concentrations. Giant reed and African fodder cane showed reduced height and productivity at higher Ni and Zn levels. Miscanthus exhibited resilience in height but experienced productivity reductions only at the highest Zn concentration. Heavy metal uptake varied among crops, with switchgrass and sorghum showing high Cd and Pb uptake, while giant reed accumulated the most Cd and Zn. Miscanthus had the highest Ni accumulation. The tolerance indices indicated that switchgrass and sorghum were more tolerant to Cd and Zn at lower concentrations, whereas miscanthus had lower tolerance to Cd but a higher tolerance to Zn at higher concentrations. Giant reed and African fodder cane demonstrated stable tolerance across most heavy metals. Accumulation indices highlighted the effectiveness of switchgrass and sorghum in Cd and Pb uptake, while miscanthus excelled in Ni and Zn accumulation. The cluster analysis revealed similar responses to heavy metal stress between African fodder cane and giant reed, as well as between sorghum and miscanthus, with switchgrass displaying distinct behavior. Overall, the study highlights the differential tolerance and accumulation capacities of these crops, indicating the potential for phytoremediation applications and biomass production in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Giorgio Testa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Barbara Rachele Ciaramella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Ana Luisa Fernando
- MEtRICs, CubicB, Chemistry Department (DQ), NOVA School of Science and Technology|NOVA FCT, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Danai Kotoula
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Danilo Scordia
- Dipartimento di Scienze Veterinarie, University of Messina, Via G. Palatucci s.n., 98168 Messina, Italy;
| | | | - Salvatore Luciano Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources, Biomass Department, 19009 Pikermi Attiki, Greece;
| | - Eleni G. Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
3
|
Moreno-Rubio N, Ortega-Villamizar D, Marimon-Bolívar W, Bustillo-Lecompte C, Tejeda-Benítez LP. Potential of Lemna minor and Eichhornia crassipes for the phytoremediation of water contaminated with Nickel (II). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:119. [PMID: 36396866 DOI: 10.1007/s10661-022-10688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phytoextraction of Nickel (II) in water by two types of aquatic macrophytes (Lemna minor and Eichhornia crassipes) was investigated using synthetic aqueous solutions of NiSO4 at concentrations of 0.5, 1.5 and 2.5 mg/L. The toxic effects of nickel salt in plants were evaluated through the presence of necrosis and chlorosis. The bioconcentration factor, Nickel (II) removal efficiency and kinetics of removal were also calculated. Results of this study show bioconcentration factors higher than 1000, which categorize L. minor and E. crassipes as hyperaccumulators. Besides, L. minor presented a removal percentage higher than 68%, compared to E. crassipes that did not exceed 50% in any of the three concentrations studied. However, E. crassipes showed better resistance to the effects of nickel and obtained a greater removal capacity during the phytoremediation process that lasted for 10 days. In contrast, L. minor suffered necrosis and chlorosis in a concentration-dependent way. Consequently, both macrophytes are sustainable alternatives for nickel removal from contaminated water.
Collapse
Affiliation(s)
- Nataly Moreno-Rubio
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia
| | - Daniela Ortega-Villamizar
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia
| | - Wilfredo Marimon-Bolívar
- Gestión y tecnología para la sustentabilidad de las comunidades - GRIIS, Facultad de Ingeniería, Universidad Católica de Colombia, Bogota, Colombia
- Center for Research in GeoAgroEnvironmental Science and Resources - CENIGAA, Neiva, Colombia
| | - Ciro Bustillo-Lecompte
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B2K3, Canada
| | - Lesly Patricia Tejeda-Benítez
- Grupo de Investigación de Desarrollo y Uso de la Biomasa, IDAB, Campus Piedra de Bolívar, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia.
- Grupo de Investigación de Ciencias biomédicas, BIOTOXAM, toxicológicas y ambientales, Cartagena, Colombia.
| |
Collapse
|
4
|
Influence of Clay Mineral Amendments Characteristics on Heavy Metals Uptake in Vetiver Grass (Chrysopogon zizanioides L. Roberty) and Indian Mustard (Brassica juncea L. Czern). SUSTAINABILITY 2022. [DOI: 10.3390/su14105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoremediation is limited when heavy metals reduce soil quality and, subsequently, inhibit plant growth. In this study, we evaluated the use of attapulgite and bentonite as amendments in soil contaminated with multiple metals, to improve the phytoremediation capacity of Vetiver grass and Indian mustard. A 21-day greenhouse study was undertaken, to investigate plant tolerance in heavy-metal-contaminated soil, as well as heavy-metal absorption in plant roots and shoots. The results showed a generally higher root-uptake rate for Cr, Cu, Co, Ni, and Zn in Vetiver grass. Overall, the highest absorption for Ni, Cr, Co, Cu, and Zn was 1.37, 2.79, 1.39, 2.48 and 3.51 mg/kg, respectively, in the roots of Vetiver grass. Clay minerals inhibited the translocation of some heavy metals. The addition of attapulgite improved the phytoremediation capacity of Vetiver for Ni, Cr, and Co, while bentonite improved Vetiver’s absorption of Cu and Zn. The translocation factor for Ni in one of the attapulgite treatments was 2, indicating that attapulgite improved the phytoextraction of Ni by Vetiver grass. Our results confirm that attapulgite at 2.5% (w/w) can successfully improve the phytostabilization of heavy metals by Vetiver grass. Indian mustard showed no significant metal uptake that could be detected by inductively coupled plasma optical emission spectrometry (ICP-OES), despite the addition of attapulgite and bentonite. This research contributes to the knowledge repository of suitable amendments that improve the phytoremediation properties of Vetiver grass.
Collapse
|
5
|
Li JX, Zhang RL, Pan ZJ, Liao Y, Xiong CB, Chen ML, Huang R, Pan XH, Chen Z. Preparation of CdS@C Photocatalyst Using Phytoaccumulation Cd Recycled From Contaminated Wastewater. Front Chem 2021; 9:717210. [PMID: 34660527 PMCID: PMC8512432 DOI: 10.3389/fchem.2021.717210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cadmium is one of the most toxic heavy metal contaminants in soils and water bodies and poses a serious threat to ecosystems and humans. However, cadmium is also an important resource widely used in many industries. The recovery of cadmium in the form of high-value products is considered as an ideal disposal strategy for Cd-contaminated environments. In this work, Pistia stratiotes was used to recycle cadmium from wastewaters through phytoaccumulation and then transformed into carbon-supported cadmium sulfide photocatalyst (CdS@C) through carbonization and hydrothermal reaction. The CdS@C photocatalyst contained a mixture of cubic and hexagonal CdS with lower band gap energy (2.14 eV) and high electron-hole separation efficiency, suggesting an excellent photoresponse ability and photocatalytic efficiency. The impressive stability and photocatalytic performance of CdS@C were demonstrated in efficient photodegradation of organic pollutants. •OH and O2•- were confirmed as the major active species for organic pollutants degradation during CdS@C photocatalysis. This work provides new insights into addressing Cd contaminated water bodies and upcycling in the form of photocatalyst.
Collapse
Affiliation(s)
- Jia-Xin Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rou-Lan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-Jian Pan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao-Bin Xiong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Li Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Hong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Romeh AA. Potential risks from the accumulation of heavy metals in canola plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52529-52546. [PMID: 34014484 DOI: 10.1007/s11356-021-14330-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of heavy metals in agricultural land near highways are a major concern for humans. This study was conducted to investigate the contamination level of heavy metals in soil, canola crop, and the potential health risk for honeybee and human. The average concentrations (mg/kg) of Co (15.94), Cr (169.66), Ni (55.39), Mn (765.34) Hg (2.99), and Cu (51.31) were elevated beyond their background reference values in world soil average, while Pb (9.45) was below to their respective background levels. This was confirmed by contamination factor (CF) and ecological risk factors (Er). Heavy metal concentrations in different parts of canola decreased in the following order: Fe> Mn > Cr > Pb > Co > Cu > Ni > Hg. Honey transfer factor (TFH) of heavy metals was less than unity except Ni and Hg. Human health (non-carcinogenic) risk assessment of heavy metals in the soil through potential exposure pathway (ingestion) recorded a dramatically increased risk for children (hazard index, HI=2.44). Hazard quotient via honey (HQH) consumption value of heavy metals were within the safe limits (HQ< 1). Probably, honeybees have a strong ability to transfer Co, Pb, Hg, and Mn (HQ> 1) from the canola to their hives during collecting pollen and nectar. HQ in honeybee workers from the consumption of honey can be used to derive HQ in humans using the hazard factor (HF). HF is 1481.482 (Pb), 2356.902 (Ni), and 3888.889 (Cr), respectively, for adult human (70kg) and 317.460 (Pb), 504.377(Ni), and 832.22 (Cr) for children (15kg).
Collapse
Affiliation(s)
- Ahmed Ali Romeh
- Plant Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
7
|
Selected Plant-Related Papers from the First Joint Meeting on Soil and Plant System Sciences (SPSS 2019)-"Natural and Human-Induced Impacts on the Critical Zone and Food Production". PLANTS 2020; 9:plants9091132. [PMID: 32882847 PMCID: PMC7570286 DOI: 10.3390/plants9091132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/14/2023]
Abstract
The First Joint Meeting on Soil and Plant System Sciences (SPSS 2019), titled “Natural and Human-Induced Impacts on the Critical Zone and Food Production”, aimed at integrating different scientific backgrounds and topics flowing into the Critical Zone, where chemical, biological, physical, and geological processes work together to support life on the Earth’s surface. The SPSS 2019 meeting gathered the thoughts and findings of scientists, professionals and individuals from different countries working in different research fields. This Special Issue comprises a selection of original works on the plant-related topics presented during this international meeting.
Collapse
|