1
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
2
|
Mishra P, Mishra J, Arora NK. Biofortification revisited: Addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol Res 2023; 275:127442. [PMID: 37437425 DOI: 10.1016/j.micres.2023.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Trace element deficiency is a pervasive issue contributing to malnutrition on a global scale. The primary cause of this hidden hunger is related to low dietary intake of essential trace elements, which is highly prevalent in numerous regions across the world. To address deficiency diseases in humans, fortification of staple crops with vital trace elements has emerged as a viable solution. Current methods for fortifying crops encompass chemical amendments, genetic breeding, and transgenic approaches, yet these approaches possess certain limitations, constraining their agricultural application. In contrast, fortifying staple crops through the utilization of soil-beneficial microbes has emerged as a promising and economically feasible approach to enhance trace element content in crops. A specific subset of these beneficial soil microbes, referred to as plant growth-promoting microbes, have demonstrated their ability to influence the interactions between plants, soil, and minerals. These microbes facilitate the transport of essential soil minerals, such as zinc, iron, and selenium, into plants, offering the potential for the development of tailored bioinoculants that can enhance the nutritional quality of cereals, pulses, and vegetable crops. Nevertheless, further research efforts are necessary to comprehensively understand the molecular mechanisms underlying the uptake, transport, and augmentation of trace element concentrations in staple crops. By delving deeper into these mechanisms, customized bioinoculants of soil-beneficial microbes can be developed to serve as highly effective strategies in combating trace element deficiency and promoting global nutritional well-being.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
3
|
Sindireva A, Golubkina N, Bezuglova H, Fedotov M, Alpatov A, Erdenotsogt E, Sękara A, Murariu OC, Caruso G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2847. [PMID: 37571001 PMCID: PMC10420794 DOI: 10.3390/plants12152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Faba bean (Vicia faba L.) has spread worldwide as an excellent source of proteins. To evaluate the efficiency of Se biofortification, four cultivars of V. faba (Belorussian, Russian Black, Hangdown Grünkernig, and Dreifach Weiβe) were foliar treated with 1.27 mM solutions of nano-Se, sodium selenate, and sodium selenite. Yield, protein, and Se contents were greatly affected by genetic factors and chemical form of Se. Selenium biofortification levels were negatively correlated with Se concentration in control plants and increased according to the following sequence: nano-Se < sodium selenite < sodium selenate. Contrary to selenate and selenite, nano-Se showed a growth-stimulating effect, improving yield, seed weight, and pod number. Pod thickness decreased significantly as a result of nano-Se supply and increased by 1.5-2.3 times under selenate and selenite supply. The highest Se concentrations were recorded in the seeds of Se-fortified cv. Belorussian and the lowest one in those of Se-treated Hangdown Grünkernig. Protein accumulation was varietal dependent and decreased upon 1.27 mM selenate and selenite treatment in the cvs. Hangdown Grünkernig and Dreifach Weiβe. The results indicate the high prospects of nano-Se supply for the production of faba bean seeds with high levels of Se.
Collapse
Affiliation(s)
- Anna Sindireva
- Department of Geoecology and Nature Management, Tumen State University, Volodarsky Str. 6, 625003 Tumen, Russia
| | - Nadezhda Golubkina
- Federal Scientific Vegetable Center, Selectsionnaya, 14, VNIISSOK, Odintsovo District, 143072 Moscow, Russia
| | - Helene Bezuglova
- Department of Agronomy, Selection and Seeds Production, Omsk State Agrarian University, Institutskaya Square, 1, 644008 Omsk, Russia;
| | - Mikhail Fedotov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Andrey Alpatov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr., 49, 119334 Moscow, Russia; (M.F.); (A.A.)
| | - Erdene Erdenotsogt
- Mongolian National Center of Public Health, Peace Ave, 46, Ulaanbaatar 211049, Mongolia;
| | - Agnieszka Sękara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Otilia Cristina Murariu
- Department of Food Technology, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700440 Iasi, Romania;
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| |
Collapse
|
4
|
Golubkina N, Moldovan A, Fedotov M, Kekina H, Kharchenko V, Folmanis G, Alpatov A, Caruso G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:2528. [PMID: 34834890 PMCID: PMC8618568 DOI: 10.3390/plants10112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Production of functional food with high levels of selenium (Se) and iodine (I) obtained via plant biofortification shows significant difficulties due to the complex interaction between the two elements. Taking into account the known beneficial effect of silicon (Si) on plant growth and development, single and joint foliar biofortification of chervil plants with potassium iodide (150 mg L-1) and sodium selenate (10 mg L-1) was carried out in a pot experiment with and without Si nanoparticles foliar supplementation. Compared to control plants, nano-Si (14 mg L-1) increased shoot biomass in all treatments: by 4.8 times with Si; by 2.8 times with I + Si; by 5.6 times with Se + Si; by 4.0 times with I + Se + Si. The correspondent increases in root biomass were 4.5, 8.7, 13.3 and 10.0 times, respectively. The growth stimulation effect of Se, I and I + Se treatments resulted in a 2.7, 3.5 and 3.6 times increase for chervil shoots and 1.6, 3.1 and 8.6 times for roots, respectively. Nano-Si improved I biofortification levels by twice, while I and Se enhanced the plant content of each other. All treatments decreased nitrate levels, compared to control, and increased the photopigment accumulation. Improvement of total antioxidant activity and phenolic content was recorded only under the joint application of Se + I + Si. Foliar nano-Si treatment affected other element content in plants: decreased Na+ accumulation in single and joint supplementation with Se and I, restored Fe, Mn and Cr amount compared to the decreased levels recorded in separately Se and I fortified plants and promoted Al accumulation both with or without Se and I biofortification. The results of this research suggest high prospects of foliar nano-Si supply for enhancing both growth and joint I/Se biofortification of chervil.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Mikhail Fedotov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Helene Kekina
- Department of Hygiene, Medical Postgraduate Academy, Moscow 123995, Russia;
| | - Viktor Kharchenko
- Federal Scientific Vegetable Center, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Gundar Folmanis
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Andrey Alpatov
- A. Baikov Institute of Metallurgy and Material Science, Leninsky Pr. 49, Moscow 119334, Russia; (M.F.); (G.F.); (A.A.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy;
| |
Collapse
|
5
|
Yang D, Hu C, Wang X, Shi G, Li Y, Fei Y, Song Y, Zhao X. Microbes: a potential tool for selenium biofortification. Metallomics 2021; 13:6363703. [PMID: 34477877 DOI: 10.1093/mtomcs/mfab054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/19/2021] [Indexed: 11/14/2022]
Abstract
Selenium (Se) is a component of many enzymes and indispensable for human health due to its characteristics of reducing oxidative stress and enhancing immunity. Human beings take Se mainly from Se-containing crops. Taking measures to biofortify crops with Se may lead to improved public health. Se accumulation in plants mainly depends on the content and bioavailability of Se in soil. Beneficial microbes may change the chemical form and bioavailability of Se. This review highlights the potential role of microbes in promoting Se uptake and accumulation in crops and the related mechanisms. The potential approaches of microbial enhancement of Se biofortification can be summarized in the following four aspects: (1) microbes alter soil properties and impact the redox chemistry of Se to improve the bioavailability of Se in soil; (2) beneficial microbes regulate root morphology and stimulate the development of plants through the release of certain secretions, facilitating Se uptake in plants; (3) microbes upregulate the expression of certain genes and proteins that are related to Se metabolism in plants; and (4) the inoculation of microbes give rise to the generation of certain metabolites in plants contributing to Se absorption. Considering the ecological safety and economic feasibility, microbial enhancement is a potential tool for Se biofortification. For further study, the recombination and establishment of synthesis microbes is of potential benefit in Se-enrichment agriculture.
Collapse
Affiliation(s)
- Dandan Yang
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanfeng Li
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yuchen Fei
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yinran Song
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial, Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.,Institute of Quality Standard and Monitoring Technology for Agro-product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. PLANTS 2021; 10:plants10081533. [PMID: 34451578 PMCID: PMC8400793 DOI: 10.3390/plants10081533] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/09/2023]
Abstract
An increasing need for a more sustainable agriculturally-productive system is required in order to preserve soil fertility and reduce soil biodiversity loss. Microbial biostimulants are innovative technologies able to ensure agricultural yield with high nutritional values, overcoming the negative effects derived from environmental changes. The aim of this review was to provide an overview on the research related to plant growth promoting microorganisms (PGPMs) used alone, in consortium, or in combination with organic matrices such as plant biostimulants (PBs). Moreover, the effectiveness and the role of microbial biostimulants as a biological tool to improve fruit quality and limit soil degradation is discussed. Finally, the increased use of these products requires the achievement of an accurate selection of beneficial microorganisms and consortia, and the ability to prepare for future agriculture challenges. Hence, the implementation of the microorganism positive list provided by EU (2019/1009), is desirable.
Collapse
Affiliation(s)
- Adele M. Castiglione
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Green Has Italia S.P.A, 12043 Canale, Italy;
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
| | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, 10135 Turin, Italy; (A.M.C.); (G.M.)
- Correspondence: ; Tel.: +39-0116706361
| | - Andrea Ertani
- Department of Agricultural Forest and Food Sciences, University of Torino, 10095 Turin, Italy;
| |
Collapse
|
7
|
Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. PLANTS (BASEL, SWITZERLAND) 2021; 10:1352. [PMID: 34371555 PMCID: PMC8309223 DOI: 10.3390/plants10071352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Helene Kekina
- Medical Academy of Post Graduate Education, Moscow 123995, Russia;
| | - Victor Kharchenko
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Viliana Vasileva
- Institute of Forage Crops, 89 General Vladimir Vazov Str, 5802 Pleven, Bulgaria;
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|
8
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|