1
|
Berg J, Rodrigues CM, Scheid C, Pirrotte Y, Picco C, Scholz‐Starke J, Zierer W, Czarnecki O, Hackenberg D, Ludewig F, Koch W, Neuhaus HE, Müdsam C, Pommerrenig B, Keller I. The Vacuolar Inositol Transporter BvINT1;1 Contributes to Raffinose Biosynthesis and Reactive Oxygen Species Scavenging During Cold Stress in Sugar Beet. PLANT, CELL & ENVIRONMENT 2025; 48:3471-3486. [PMID: 39776406 PMCID: PMC11963481 DOI: 10.1111/pce.15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant. However, synthesis of raffinose and other oligosaccharides of the raffinose family depends on the availability of myo-inositol. Since inositol and inositol-metabolising enzymes reside in different organelles, functional inositol metabolism and raffinose synthesis depend on inositol transporters. We identified five homologues of putative inositol transporters in the sugar beet genome, two of which, BvINT1;1 and BvINT1;2, are localised at the tonoplast. Among these, only the transcript of BvINT1;1 is highly upregulated in sugar beet taproots under cold. BvINT1;1 exhibits a high transport specificity for inositol and sugar beet mutants lacking functional BvINT1;1 contain increased inositol levels, likely accumulating in the vacuole, and decreased raffinose contents under cold treatment. Due to the quenching capacity of raffinose for Reactive Oxygen Species (ROS), which accumulate under cold stress, bvint1;1 sugar beet plants show increased expression of both, ROS marker genes and detoxifying enzymes. Based on these findings, we conclude that the vacuolar inositol transporter BvINT1;1 is contributing to ROS-homoeostasis in the cold metabolism of sugar beet.
Collapse
Affiliation(s)
- Johannes Berg
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | | | - Claire Scheid
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Yana Pirrotte
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Cristiana Picco
- Istituto di BiofisicaConsiglio Nazionale delle Ricerche (CNR)Via De MariniGenovaItaly
| | - Joachim Scholz‐Starke
- Istituto di BiofisicaConsiglio Nazionale delle Ricerche (CNR)Via De MariniGenovaItaly
| | - Wolfgang Zierer
- Friedrich‐AlexanderUniversity of Erlangen‐NurembergBiochemistry, StaudtstrErlangenGermany
| | | | | | | | | | - H. Ekkehard Neuhaus
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Christina Müdsam
- Friedrich‐AlexanderUniversity of Erlangen‐NurembergBiochemistry, StaudtstrErlangenGermany
| | - Benjamin Pommerrenig
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| | - Isabel Keller
- University of KaiserslauternPlant Physiology, Paul‐Ehrlich‐Str.KaiserslauternGermany
| |
Collapse
|
2
|
Guan Y, Lu L, Liu J, Lyu M, Xu X, Xing Y, Feng Z, Liu C, Xie H, Ni W, Wang H, Zhang R, Wu W, Guo Z, Ding Y, Zhu Z, Jiang Y, Ge S. Zinc promotes nitrogen uptake and plant growth by regulating the antioxidant system and carbon-nitrogen metabolism under drought condition in apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109619. [PMID: 39952158 DOI: 10.1016/j.plaphy.2025.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Zn plays an important role in plant defense against abiotic stress, but the underlying mechanism of Zn alleviates drought stress in apple plants remains unclear. Here, we investigated the effects of Zn on plant growth, antioxidant system, C-N metabolism, and N uptake under drought stress through a hydroponic experiment. Drought stress induced the production of H2O2, hindered photosynthesis, disturbed C-N metabolism, and ultimately reduced total dry weight and N accumulation. Compared to the drought treatment, the total dry weight and N accumulation in Zn-treated plants increased by 33.85% and 40.54%, respectively. Zn increased antioxidant enzyme activities under drought stress, which reduced the H2O2 content, thereby decreasing the accumulation of MDA, ultimately protecting plant cells from oxidative damage. Additionally, Zn up-regulated the expression of aquaporin genes (MdPIP1;1, MdPIP1;2) under drought stress and increased leaf relative water content. Under drought stress, the photosynthetic rate of Zn-treated plants was 60.30% higher than that of non-treated plants, due to an increased proportion of photosynthetic nitrogen and a reduction in photosynthetic limitations. Furthermore, Zn promoted the transport of photosynthetic products (sucrose, sorbitol) from the leaves to roots. Regarding N metabolism, the activities of NR, NiR, GS, and GOGAT in Zn-treated plants were significantly higher than those in non-treated plants under drought stress. Zn-treated plants also exhibited significantly higher expression of nitrate transporter genes (MdNRT1.1, MdNRT2.4) and NO3- ion influx flow rate in root. Overall, our results demonstrate that Zn promotes N uptake and plant growth by regulating the antioxidant system and C-N metabolism under drought conditions in apple plants.
Collapse
Affiliation(s)
- Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Lei Lu
- Yili Kazak Autonomous Prefecture Academy of Forestry Sciences, Yining, Xinjiang, 835000, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Xinxiang Xu
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yantai, Shandong, 265500, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Hongguo Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Wenju Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Zisen Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Yanfeng Ding
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| |
Collapse
|
3
|
Keller I, Neuhaus HE. Innovations and threats facing the storage of sugar in sugar beet. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102721. [PMID: 40157131 DOI: 10.1016/j.pbi.2025.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Sugar beet has great economic impact, particularly in the Northern Hemisphere. Classical breeding has increased the plants' taproot sugar contents to 20 %, but further improvements require the identification of factors limiting sucrose accumulation. Recent research uncovered key elements for sucrose storage, including the identification of the transporter pumping sucrose into taproot vacuoles and regulatory proteins controlling its activity. As with other crops, sugar beet breeding led to undesirable trait-offs, like increased frost sensitivity. However, studies of the plants' metabolic reprogramming upon cold temperatures suggest potential strategies for i) improving cold/frost tolerance and ii) stabilizing yield. In addition, a rapidly evolving bacterial infection has emerged, causing "Syndrome basses richesses". Our understanding of this disease is limited, so research is needed to prevent its spread and secure sugar beet production. Accordingly, managing the effects of environmental stresses on genetically optimized plants and minimizing disease threats is critical for maintaining and improving yield.
Collapse
Affiliation(s)
- Isabel Keller
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern-Landau, Plant Physiology, Paul-Ehrlich-Str., 67663 Kaiserslautern, Germany.
| |
Collapse
|
4
|
Zhu R, He S, Ling H, Liang Y, Wei B, Yuan X, Cheng W, Peng B, Xiao J, Wei J, He Y, Xiao H, Wang Z. Optimizing tobacco quality and yield through the scientific application of organic-inorganic fertilizer in China: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1500544. [PMID: 39759237 PMCID: PMC11697594 DOI: 10.3389/fpls.2024.1500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025]
Abstract
China is the largest producer and consumer of tobacco (Nicotiana tabacum L.) in the world, and the cultivation and production of tobacco have extremely high economic value and social influence. Applying organic-inorganic fertilizer is a key strategy for boosting tobacco yield and quality. This meta-analysis examines 632 observations from 169 articles to determine the precise influence of organic-inorganic fertilizer on tobacco. It evaluates the effects of different tobacco types and fertilizer compositions on yield and quality after fertilizer application. The application of organic-inorganic fertilizer significantly increased the yield (3.4%), but it mainly improved the balance of chemical composition and enhance the quality of tobacco (high-grade tobacco, 10.3%; reducing sugar content, 5.5%; nicotine content, -5.6%). The Y85 and Y87 varieties showed the most positive response to fertilization, with yield increases of 5.59% and 5.82%, respectively, and high-grade tobacco leaf rates increased by 14.92% and 11.04%, respectively. Fertilizers with a low organic nitrogen ratio (15%-30%) are more effective for increasing yield, while those with a medium to high ratio (50%-60%) improve tobacco's chemical quality. The application of organic-inorganic fertilizer balanced the nutrient distribution within the tobacco plants, leading to simultaneous increases in both yield and quality. This study quantitatively assessed the effects of organic-inorganic fertilizer on the yield and quality of tobacco and provides a solid theoretical foundation for the scientific and high-quality application of organic-inorganic fertilizer in various tobacco cultivation areas.
Collapse
Affiliation(s)
- Ruixuan Zhu
- College of Agriculture, University of Guangxi, Nanning, China
| | - Shijie He
- College of Agriculture, University of Guangxi, Nanning, China
| | - Huarong Ling
- College of Agriculture, University of Guangxi, Nanning, China
| | - Yongjin Liang
- Guangxi China Tobacco Industry Co., Ltd., Nanning, China
| | - Beilei Wei
- College of Agriculture, University of Guangxi, Nanning, China
| | - Xiaomai Yuan
- College of Agriculture, University of Guangxi, Nanning, China
| | - Wuyang Cheng
- Guangxi China Tobacco Industry Co., Ltd., Nanning, China
| | - Bo Peng
- Guangxi China Tobacco Industry Co., Ltd., Nanning, China
| | - Jinglin Xiao
- Guangxi China Tobacco Industry Co., Ltd., Nanning, China
| | - Jianyu Wei
- Guangxi China Tobacco Industry Co., Ltd., Nanning, China
| | - Yi He
- Hunan China Tobacco Industry Co., Ltd., Changsha, China
| | - Heyou Xiao
- Hunan Shaoyang Tobacco Co., Ltd., Shaoyang, China
| | - Ziting Wang
- College of Agriculture, University of Guangxi, Nanning, China
- China Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, University of Guangxi, Nanning, China
| |
Collapse
|
5
|
Rüscher D, Vasina VV, Knoblauch J, Bellin L, Pommerrenig B, Alseekh S, Fernie AR, Neuhaus HE, Knoblauch M, Sonnewald U, Zierer W. Symplasmic phloem loading and subcellular transport in storage roots are key factors for carbon allocation in cassava. PLANT PHYSIOLOGY 2024; 196:1322-1339. [PMID: 38775728 PMCID: PMC11483629 DOI: 10.1093/plphys/kiae298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 10/03/2024]
Abstract
Cassava (Manihot esculenta) is a deciduous woody perennial shrub that stores large amounts of carbon and water in its storage roots. Previous studies have shown that assimilating unloading into storage roots happens symplasmically once secondary anatomy is established. However, mechanisms controlling phloem loading and overall carbon partitioning to different cassava tissues remain unclear. Here, we used a combination of histological, transcriptional, and biochemical analyses on different cassava tissues and at different timepoints to better understand source-sink carbon allocation. We found that cassava likely utilizes a predominantly passive symplasmic phloem loading strategy, indicated by the lack of expression of genes coding for key players of sucrose transport, the existence of branched plasmodesmata in the companion cell/bundle sheath interface of minor leaf veins, and very high leaf sucrose concentrations. Furthermore, we showed that tissue-specific changes in anatomy and non-structural carbohydrate contents are associated with tissue-specific modification in gene expression for sucrose cleavage/synthesis, as well as subcellular compartmentalization of sugars. Overall, our data suggest that carbon allocation during storage root filling is mostly facilitated symplasmically and is likely mostly regulated by local tissue demand and subcellular compartmentalization.
Collapse
Affiliation(s)
- David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Leo Bellin
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Saleh Alseekh
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Alisdair R Fernie
- Division of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- Division of Plant Physiology, Department of Biology, University of Kaiserslautern-Landau (RPTU), Erwin-Schrödinger-Str. 22, 67663 Kaiserslautern, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Bolat I, Korkmaz K, Dogan M, Turan M, Kaya C, Seyed Hajizadeh H, Kaya O. Enhancing drought, heat shock, and combined stress tolerance in Myrobalan 29C rootstocks with foliar application of potassium nitrate. BMC PLANT BIOLOGY 2024; 24:140. [PMID: 38413882 PMCID: PMC10898176 DOI: 10.1186/s12870-024-04811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.
Collapse
Affiliation(s)
- Ibrahim Bolat
- Faculty of Agriculture, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Kubra Korkmaz
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Meral Dogan
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Metin Turan
- Faculty of Economy and Administrative Science, Yeditepe University, Istanbul, 34755, Türkiye
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Türkiye.
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Türkiye.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
7
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
8
|
Li J, Zhao M, Liu L, Guo X, Pei Y, Wang C, Song X. Exogenous Sorbitol Application Confers Drought Tolerance to Maize Seedlings through Up-Regulating Antioxidant System and Endogenous Sorbitol Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2456. [PMID: 37447017 DOI: 10.3390/plants12132456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
This study aims to explore the impacts of exogenous sorbitol on maize seedlings under polyethylene glycol (PEG)-simulated drought stress. Six treatments were set: normal condition (CK), PEG (P), 10 mM sorbitol (10S), PEG plus 10 mM sorbitol (10SP), 100 mM sorbitol (100S) and PEG plus 100 mM sorbitol (100SP). Maize seedlings' growth under PEG-simulated drought stress was significantly inhibited and exogenous sorbitol largely alleviated this growth inhibition. The seedlings under 10SP treatment grew much better than those under P, 100S and 100SP treatments and no significant difference in growth parameters was observed between the control and 10S treatment. The seedlings treated with 10SP had higher contents of soluble sugar, soluble protein, proline, ascorbic acid (AsA), reduced glutathione (GSH), sorbitol and relative water content, higher activities of antioxidant enzymes and aldose reductase, but lower contents of malondialdehyde (MDA), H2O2 and relative electrical conductivity than those treated with P, 100S and 100SP. qRT-PCR analysis showed that the transcript levels of genes encoding putative aldose reductase (AR) under P treatment were significantly up-regulated in sorbitol-applied treatments. Taken together, the results demonstrated that exogenous sorbitol application conferred drought tolerance to maize seedlings by up-regulating the expression levels of AR-related genes to enhance the accumulation of intracellular osmotic substances such as sorbitol and improve antioxidant systems to tone down the damage caused by drought stress.
Collapse
Affiliation(s)
- Jun Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Meiai Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ligong Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinmei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuhe Pei
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunxiao Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Xia Z, Wu M, Bai J, Zhang S, Zhang G, Gong Y, Yang Y, Lu H. Root zone temperature regulates potassium absorption and photosynthesis in maize (Zea mays). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107694. [PMID: 37062126 DOI: 10.1016/j.plaphy.2023.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Affected by climate warming, the impact of crop root zone warming (RZW) on maize seedling growth and nutrient uptake deserve attention. The characteristics of K uptake in maize under root zone warming and the combined impacts of potassium deficiency and RZW are still unclear. The present study aimed to investigate the effects of RZW on potassium absorption and photosynthesis of maize seedlings under the difference in potassium. The results showed that RZW and low potassium treatment significantly affected root shoot development and photosynthetic physiological characteristics of maize seedlings. Moreover, the interaction of RZW and potassium content had striking influence on maize seedlings. Under the normal potassium with root zone medium temperature treatment, the development of maize was the most vigorous. Under the dual stress of high root zone temperature and low potassium, the root absorption area, total potassium content and root activity were significantly reduced, which then influenced the light energy use efficiency and dry matter accumulation. Securing the supply of potassium fertilizer under high root zone temperature stress is useful to alleviate the impact of high temperature stress.
Collapse
Affiliation(s)
- Zhenqing Xia
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wu
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jingxuan Bai
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shibo Zhang
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Guixin Zhang
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuxiang Gong
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yi Yang
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haidong Lu
- College of Agronomy of Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
11
|
Pleyerová I, Hamet J, Konrádová H, Lipavská H. Versatile roles of sorbitol in higher plants: luxury resource, effective defender or something else? PLANTA 2022; 256:13. [PMID: 35713726 DOI: 10.1007/s00425-022-03925-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Sorbitol metabolism plays multiple roles in many plants, including energy and carbon enrichment, effective defence against various stresses and other emerging specific roles. The underlying mechanisms are, however, incompletely understood. This review provides the current state-of-the-art, highlights missing knowledge and poses several remaining questions. The basic properties of sugar alcohols are summarised and pathways of sorbitol metabolism, including biosynthesis, degradation and key enzymes are described. Sorbitol transport within the plant body is discussed and individual roles of sorbitol in different organs, specific cells or even cellular compartments, are elaborated, clarifying the critical importance of sorbitol allocation and distribution. In addition to plants that accumulate and transport significant quantities of sorbitol (usual producers), there are some that synthesize small amounts of sorbitol or only possess sorbitol metabolising enzymes (non-usual producers). Modern analytical methods have recently enabled large amounts of data to be acquired on this topic, although numerous uncertainties and questions remain. For a long time, it has been clear that enriching carbohydrate metabolism with a sorbitol branch improves plant fitness under stress. Nevertheless, this is probably valid only when appropriate growth and defence trade-offs are ensured. Information on the ectopic expression of sorbitol metabolism genes has contributed substantially to our understanding of the sorbitol roles and raises new questions regarding sorbitol signalling potential. We finally examine strategies in plants producing sorbitol compared with those producing mannitol. Providing an in-depth understanding of sugar alcohol metabolism is essential for the progress in plant physiology as well as in targeted, knowledge-based crop breeding.
Collapse
Affiliation(s)
- Iveta Pleyerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Jaromír Hamet
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
12
|
Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:56-69. [PMID: 35032888 DOI: 10.1016/j.plaphy.2022.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 05/14/2023]
Abstract
Potassium (K) is an essential element for the growth and development of plants; however, its scarcity or excessive level leads to distortion of numerous functions in plants. It takes part in the control of various significant functions in plant advancement. Because of the importance index, K is regarded second after nitrogen for whole plant growth. Approximately, higher than 60 enzymes are reliant on K for activation within the plant system, in which K plays a vital function as a regulator. Potassium provides assistance in plants against abiotic stress conditions in the environment. With this background, the present paper reviews the physiological functions of K in plants like stomatal regulation, photosynthesis and water uptake. The article also focuses upon the uptake and transport mechanisms of K along with its role in detoxification of reactive oxygen species and in conferring tolerance to plants against abiotic stresses. It also highlights the research progress made in the direction of K mediated signaling cascades.
Collapse
Affiliation(s)
- Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | | | - Md Shahadat Hossen
- Independent Researcher, C/O: Prof. Mirza Hasanuzzaman, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, 182144, Jammu and Kashmir, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Taliparamba, Kannur, Kerala, 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
13
|
Keller I, Müdsam C, Rodrigues CM, Kischka D, Zierer W, Sonnewald U, Harms K, Czarnecki O, Fiedler-Wiechers K, Koch W, Neuhaus HE, Ludewig F, Pommerrenig B. Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:715767. [PMID: 34539707 PMCID: PMC8446674 DOI: 10.3389/fpls.2021.715767] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 05/20/2023]
Abstract
Sugar beet (Beta vulgaris subsp. vulgaris) is the exclusive source of sugar in the form of sucrose in temperate climate zones. Sugar beet is grown there as an annual crop from spring to autumn because of the damaging effect of freezing temperatures to taproot tissue. A collection of hybrid and non-hybrid sugar beet cultivars was tested for winter survival rates and freezing tolerance. Three genotypes with either low or high winter survival rates were selected for detailed study of their response to frost. These genotypes differed in the severity of frost injury in a defined inner region in the upper part of the taproot, the so-called pith. We aimed to elucidate genotype- and tissue-dependent molecular processes during freezing and combined analyses of sugar beet anatomy and physiology with transcriptomic and metabolite profiles of leaf and taproot tissues at low temperatures. Freezing temperatures induced strong downregulation of photosynthesis in leaves, generation of reactive oxygen species (ROS), and ROS-related gene expression in taproots. Simultaneously, expression of genes involved in raffinose metabolism, as well as concentrations of raffinose and its intermediates, increased markedly in both leaf and taproot tissue at low temperatures. The accumulation of raffinose in the pith tissue correlated with freezing tolerance of the three genotypes. We discuss a protective role for raffinose and its precursors against freezing damage of sugar beet taproot tissue.
Collapse
Affiliation(s)
- Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christina Müdsam
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - C. Martins Rodrigues
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Kischka
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Zierer
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - H. Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
- *Correspondence: Benjamin Pommerrenig,
| |
Collapse
|