1
|
Chen Y, Ince YÇ, Kawamura A, Favero DS, Suzuki T, Sugimoto K. ELONGATED HYPOCOTYL5-mediated light signaling promotes shoot regeneration in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:2549-2564. [PMID: 39315875 DOI: 10.1093/plphys/kiae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Injured plant somatic tissues regenerate themselves by establishing shoot or root meristems. In Arabidopsis (Arabidopsis thaliana), a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, whether and how environmental factors influence this process remains elusive. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyls as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristems through the regulatory network governed by HY5, thus highlighting the influence of light signals on plant developmental plasticity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yetkin Çaka Ince
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Ince YÇ, Sugimoto K. Illuminating the path to shoot meristem regeneration: Molecular insights into reprogramming cells into stem cells. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102452. [PMID: 37709567 DOI: 10.1016/j.pbi.2023.102452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Plant cells possess the ability to dedifferentiate and reprogram into stem cell-like populations, enabling the regeneration of new organs. However, the maintenance of stem cells relies on specialized microenvironments composed of distinct cell populations with specific functions. Consequently, the regeneration process necessitates the orchestrated regulation of multiple pathways across diverse cellular populations. One crucial pathway involves the transcription factor WUSCHEL HOMEOBOX 5 (WOX5), which plays a pivotal role in reprogramming cells into stem cells and promoting their conversion into shoot meristems through WUSCHEL (WUS). Additionally, cell and tissue mechanics, including cell wall modifications and mechanical stress, critically contribute to de novo shoot organogenesis by regulating polar auxin transport. Furthermore, light signaling emerges as a key regulator of plant regeneration, directly influencing expression of meristem genes and potentially influencing aforementioned pathways as well.
Collapse
Affiliation(s)
- Yetkin Çaka Ince
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
3
|
Dai X, Wang J, Wang L, Liu Z, Li Q, Cai Y, Li S, Xiang F. HY5 inhibits in vitro shoot stem cell niches initiation via directly repressing pluripotency and cytokinin pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:781-801. [PMID: 35132706 DOI: 10.1111/tpj.15703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The efficiency of plant regeneration from explants is influenced by phytohormones and environmental conditions. Light has a particularly marked effect on in vitro shoot regeneration, and some light signaling factors are involved in shoot regeneration, while the underlying molecular mechanism remains elusive. Here, ELONGATED HYPOCOTYL5 (HY5), as the key transcription factor of light signaling, was found to inhibit shoot regeneration under a range of light conditions. The heightened shoot regeneration capacity of the hy5-215 mutant was less marked in the dark than in the light, showing that HY5-mediated inhibition of shoot regeneration is partly light dependent. The co-localization of WUSCHEL (WUS) and CLAVATA3 (CLV3) expressions was found to coincide with the initiation of stem cell niches in root explants during shoot regeneration. HY5 could directly repress CLV3 and WUS expression by binding to their respective promoters. In parallel, HY5 indirectly repressed CLV3 and WUS by binding to the ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) promoter. The resulting dual regulation exerted by HY5 on WUS and CLV3 impeded the initiation of shoot stem cell niches. A HY5-mediated inhibitory pathway was identified that links cytokinin signaling and the pluripotency pathway during shoot regeneration.
Collapse
Affiliation(s)
- Xuehuan Dai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jing Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Lili Wang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Zhenhua Liu
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Qiang Li
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Yunfei Cai
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
- School of Life Sciences, Qilu Normal University, Jinan, Shandong Province, 250000, China
| | - Shuo Li
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| | - Fengning Xiang
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong Province, 266237, China
| |
Collapse
|