1
|
Mwelase S, Opara UL, Fawole OA. Effect of
Chitosan‐Based
Melatonin Composite Coating on the Quality of Minimally Processed Pomegranate
Aril‐Sacs
During Cold Storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sbulelo Mwelase
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
- UNESCO International Centre for Biotechnology Nsukka Enugu State Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology University of Johannesburg Johannesburg South Africa
| |
Collapse
|
2
|
Singh J, Pareek S, Maurya VK, Sagar NA, Kumar Y, Badgujar PC, Fawole OA. Application of Aloe vera Gel Coating Enriched with Cinnamon and Rosehip Oils to Maintain Quality and Extend Shelf Life of Pomegranate Arils. Foods 2022; 11:foods11162497. [PMID: 36010501 PMCID: PMC9407158 DOI: 10.3390/foods11162497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
A completely randomized design was applied on pomegranate arils for several post-harvest treatments before the packaging in polypropylene boxes for 15 days at (5 ± 1 °C, 95 ± 2% RH): control (untreated), Aloe vera gel (10% or 20%), 10% Aloe vera + rosehip oil (0.25% or 0.50%), 20% Aloe vera + rosehip oil (0.25% or 0.50%), 10% Aloe vera + cinnamon oil (0.25% or 0.50%), and 20% Aloe vera + cinnamon oil (0.25% or 0.50%). Aloe vera in combination with cinnamon oil resulted in an enhanced shelf life (15 d) compared to the uncoated arils (control). The Aloe vera + cinnamon oil coating led to the retention of total phenolics, anthocyanin, ascorbic acid, and antioxidant activity in context to the quality attributes. Moreover, this coating showed minimal change in the color, total soluble solids, titratable acidity, firmness, delayed ethylene production, respiration rate, and physiological weight loss. Also, A. vera + cinnamon oil coatings significantly (p < 0.05) inhibited the total counts of mesophilic aerobics, coliforms, and yeast and mold. Organoleptic attributes, including color, flavor, aroma, texture, and purchase acceptability were higher for the arils that were treated with 10% A. vera + 0.25% cinnamon oil; thus, this highly economical and easily available coating material can be formulated and used commercially to extend the shelf life and enhance the profit of the producers and/or processors.
Collapse
Affiliation(s)
- Jagmeet Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
- Correspondence: (S.P.); (O.A.F.); Tel.: +91-130-2281024 (S.P.)
| | - Vaibhav Kumar Maurya
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India or or
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131 028, Haryana, India or or
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
- Correspondence: (S.P.); (O.A.F.); Tel.: +91-130-2281024 (S.P.)
| |
Collapse
|
3
|
Chitosan-Cinnamon Oil Coating Maintains Quality and Extends Shelf Life of Ready-to-Use Pomegranate Arils under Low-Temperature Storage. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3404691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Different formulations of chitosan (1%, 2%, or 3%) with the incorporation of cinnamon oil (0.25% or 0.50%) were prepared for the preservation of pomegranate aril cv. Bhagwa. Six combinations of chitosan-cinnamon oil formulations along with one control (untreated) were applied to the freshly extracted arils using the dipping application method. All treatments were found to be effective in enhancing the shelf life, improving the postharvest characteristics, and reducing microbial populations on pomegranate arils during a 15-day storage period at 4 ± 1°C. The treated pomegranate arils exhibited excellent resistance to microbial decay, moisture loss, respiration rate, preservation of phenolics, flavonoids, and antioxidants activity, among other characteristics. Chitosan 2% + cinnamon oil 0.25% edible coating has a high potential to enhance the storage life and biochemical properties and reduce the microbial population of arils. This treatment recorded a higher total phenolic content (18%) and antioxidant activity (16%) than the control sample, respectively, at the end of storage. In addition, the treatment also helped to decrease the microbial activity by 45% compared to the control sample. The present investigation proposed an alternative method to prolong the shelf life of pomegranate arils during the 15 days of storage.
Collapse
|
4
|
Kawhena TG, Opara UL, Fawole OA. Effects of Gum Arabic Coatings Enriched with Lemongrass Essential Oil and Pomegranate Peel Extract on Quality Maintenance of Pomegranate Whole Fruit and Arils. Foods 2022; 11:593. [PMID: 35206069 PMCID: PMC8871292 DOI: 10.3390/foods11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of gum arabic coatings combined with lemongrass oil and/or pomegranate peel extract on freshly harvested mature 'Wonderful' pomegranate fruit were studied. Fruit were coated with gum arabic (GA) (1.5% w/v) alone or enriched with lemongrass oil (LM) (0.1% v/v) and/or pomegranate peel extract (PP) (1% w/v). Fruit were packed into standard open top ventilated cartons (dimensions: 0.40 m long, 0.30 m wide and 0.12 m high), and stored for 6 weeks at 5 ± 1 °C (90% RH). Evaluations were made every 2 weeks of cold storage and after 5 d of shelf life (20 °C and 65% RH). Fruit coated with GA + PP (4.09%) and GA + PP + LM (4.21%) coatings recorded the least cumulative weight loss compared to the uncoated control (9.87%). After 6 weeks, uncoated control and GA + PP + LM recorded the highest (24.55 mg CO2Kg-1h-1) and lowest (10.76 mg CO2Kg-1h-1) respiration rate, respectively. Coating treatments reduced the incidence of decay and treatments GA + LM + PP and GA + PP recorded the highest total flavonoid content between 2 and 6 weeks of storage. The findings suggest that GA coatings with/without LM and PP can be a beneficial postharvest treatment for 'Wonderful' pomegranates to reduce weight loss and decay development during cold storage.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Enugu State, Nigeria
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
5
|
Development of grape pomace extract based edible coating for shelf life extension of pomegranate arils. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Effect of Chitosan-24-Epibrassinolide Composite Coating on the Quality Attributes of Late-Harvested Pomegranate Fruit under Simulated Commercial Storage Conditions. PLANTS 2022; 11:plants11030351. [PMID: 35161332 PMCID: PMC8838161 DOI: 10.3390/plants11030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
This study evaluated the efficacy of chitosan (CH) functionalized with 24-epibrassinolide (EBR) coating in terms of preserving the postharvest quality of late-harvested pomegranate (cv. Wonderful) fruit. Late-harvested pomegranate fruit were immersed for 3 min in different surface treatment solutions—CH 1.5% (w/v), CH + 2 µM EBR, CH + 5 µM EBR, CH + 10 µM EBR and CH + 15 µM EBR—and distilled water was used as a control treatment. The fruit were air-dried and subjected to long storage duration at 5 °C with 85 ± 5 RH for 12 weeks. At 4-week sampling intervals, a batch of fruits was placed at 21 ± 2 °C and 65–70% RH for a further 3 d period to simulate retail conditions before measurements were taken. Fruit physiological responses, physico-chemical properties, phytochemical contents, antioxidant capacity and physiological disorders were monitored during storage. The results showed that the CH-EBR composite edible coatings significantly (p < 0.05) delayed degradative processes due to senescence. The CH-EBR treatments delayed colour, texture and total soluble solids (TSS) degradation and reduced weight loss, respiration, electrolyte leakage and spoilage compared to the control and CH treatment. The treatment effect was more noticeable on fruit treated with CH + 10 µM EBR, which exhibited lower weight loss (18.19%), respiration rate (7.72 mL CO2 kg−1 h−1), electrolyte leakage (27.54%) and decay (12.5%), and maintained higher texture (10.8 N) and TSS (17.67 °Brix) compared to the untreated fruit with respective values of 24.32%, 18.06 mL CO2 kg−1 h−1, 43.15%, 37.5%, 8.32 N and 17.03 °Brix. This was largely attributed to the significantly higher antioxidant content, including the ascorbic acid content, total phenol content, total anthocyanin content and DPPH (radical scavenging activity), of the coated fruit compared to the control fruit. Therefore, CH + 10 µM EBR treatment is recommended as a postharvest management strategy to improve the quality preservation of late-harvested pomegranate fruit during storage.
Collapse
|
7
|
Hashemi M, Dastjerdi AM, Mirdehghan SH, Shakerardekani A, Golding JB. Incorporation of Zataria multiflora Boiss essential oil into gum Arabic edible coating to maintain the quality properties of fresh in-hull pistachio (Pistacia vera L.). Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Synergistic Effect of Methyl Cellulose and Carvacrol Coating on Physicochemical and Microbial Attributes of Mango (Mangifera indica) Fruit in Postharvest Storage. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decay on mango (Mangifera indica) fruit mostly derived from a fungal disease which was caused by anthracnose invasion and infestation. The falling quality of mango fruit during postharvest preservation was commonly associated with weight loss, softening, vitamin C degradation and decay. This research evaluated the synergistic effect of methyl cellulose (MC) and carvacrol (Car) in the preparation of the edible coating on the physicochemical and microbial characteristics of mango fruit during 28 days of storage at 18°C. Five groups of coating treatments were prepared as follows: A (4% MC), B (4% MC + 0.5% Car), C (4% MC + 0.75% Car), D (4% MC + 1.0% Car), E (4% MC + 1.25% Car). These coating solutions were set 40°C for mango dipping. Mango fruits were individually dipped in the respected MC-Car solutions for 15 s and left out to air-condition for 30 min to create the coating film. These mango fruits were then kept at 18°C for 28 days. In 7 day-interval, experimental fruits were sampled to estimate weight loss, firmness, ascorbic acid content, decay index. Mango fruit pre-coated by 4% MC + 1.0% Car showed the least weight loss (1.61±0.03 %) and decay index (2.19±0.03 mark) while the highest retention of firmness (47.13±0.23 N) and ascorbic acid (25.60±0.13 mg/100 g) at the end of 28 days of storage. Results showed that incorporation of 1.0% carvacrol into 4% methyl cellulose-based edible coating would extend the shelf-life of mango fruit for 28 days of preservation. The edible coating would be a promising and green alternative with minimal environmental pollution.
Collapse
|
9
|
Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica). COATINGS 2021. [DOI: 10.3390/coatings11070764] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polysaccharide based composite biomaterial (coating) used in preserving fruits and vegetables during storage is attracting increased attention as it is biodegradable material that prolongs shelf life. In the present investigation, chitosan–pullulan (50:50) composite edible coating was prepared with pomegranate peel extract (0.02 g/mL) as an active antioxidant agent. The effect of treatment with pomegranate peel extract enriched chitosan–pullulan composite edible coating on the shelf life of mango fruits during 18 days of storage period at room (23 °C) and cold (4 °C) temperature was evaluated. Results of the present study demonstrated that the application of chitosan–pullulan composite edible coating significantly (p ≤ 0.05) influences the storage life of mango fruits at both storage temperatures. The chitosan–pullulan composite edible coating reduced the physiological loss in weight (PLW), and maintained total soluble solids (TSS), acidity and pH of coated mango fruits as compared to the control. In addition, fruit sensory quality such as freshness, color, taste and texture were also retained by the treatment. Furthermore, sustained firmness, phenolic content and antioxidant activity confirmed the effectiveness of the pomegranate peel extract enriched chitosan–pullulan composite edible coating on mango fruits. The phenolic, flavonoid and antioxidant activity of coated fruits were retained by pomegranate peel rich edible coating. Therefore, the chitosan–pullulan (50:50) combination with pomegranate peel extract can be used as an alternative preservation method to prolong the shelf life of mango fruits at room and cold storage conditions. However, more in-depth studies are required at farm and transit level without affecting the postharvest quality of mango fruits, providing more revenue for farmers and minimizing postharvest losses.
Collapse
|
10
|
Kawhena TG, Opara UL, Fawole OA. A Comparative Study of Antimicrobial and Antioxidant Activities of Plant Essential Oils and Extracts as Candidate Ingredients for Edible Coatings to Control Decay in 'Wonderful' Pomegranate. Molecules 2021; 26:molecules26113367. [PMID: 34199618 PMCID: PMC8199716 DOI: 10.3390/molecules26113367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
This study determined the antimicrobial and antioxidant activity of lemongrass (LO), thyme (TO), and oregano (OO) essential oils and ethanolic extracts of pomegranate peel (PPE) and grape pomace (GPE) as candidate ingredients for edible coatings. Antifungal effects against Botrytis cinerea and Penicillium spp. were tested using paper disc and well diffusion methods. Radical scavenging activity (RSA) was evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays. Gas chromatography-mass spectrometry analysis identified limonene (16.59%), α-citral (27.45%), β-citral (27.43%), thymol (33.31%), paracymene (43.26%), 1,8-cineole (17.53%), and trans-caryphellene (60.84%) as major compounds of the essential oils. From both paper disc and well diffusion methods, LO recorded the widest zone of inhibition against tested microbes (B. cinerea and Penicillium spp.). The minimum inhibitory concentrations of LO against B. cinerea and Penicillium spp., were 15 µL/mL and 30 µL/mL, respectively. The highest (69.95%) and lowest (1.64%) RSA at 1 mg/mL were recorded for PPE and OO. Application of sodium alginate and chitosan-based coatings formulated with LO (15 or 30 µL/mL) completely inhibited spore germination and reduced the decay severity of ‘Wonderful’ pomegranate. Lemongrass oil proved to be a potential antifungal agent for edible coatings developed to extend shelf life of ‘Wonderful’ pomegranate.
Collapse
Affiliation(s)
- Tatenda Gift Kawhena
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa;
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Nigeria
- Correspondence: or (U.L.O.); or (O.A.F.)
| | - Olaniyi Amos Fawole
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
- Correspondence: or (U.L.O.); or (O.A.F.)
| |
Collapse
|
11
|
Quality Attributes and Storage of Tomato Fruits as Affected by an Eco-Friendly, Essential Oil-Based Product. PLANTS 2021; 10:plants10061125. [PMID: 34205988 PMCID: PMC8228351 DOI: 10.3390/plants10061125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
The preservation of fresh produce quality is a major aim in the food industry since consumers demand safe and of high nutritional value products. In recent decades there has been a turn towards the use of eco-friendly, natural products (i.e., essential oils-EOs) in an attempt to reduce chemical-based sanitizing agents (i.e., chlorine and chlorine-based agents). The aim of this study was to evaluate the efficacy of an eco-friendly product (EP—based on rosemary and eucalyptus essential oils) and two different application methods (vapor and dipping) on the quality attributes of tomato fruits throughout storage at 11 °C and 90% relative humidity for 14 days. The results indicated that overall, the EP was able to maintain the quality of tomato fruits. Dipping application was found to affect less the quality attributes of tomato, such as titratable acidity, ripening index and antioxidant activity compared to the vapor application method. Vapor application of 0.4% EP increased fruit’s antioxidant activity, whereas tomatoes dipped in EP solution presented decreased damage index (hydrogen peroxide and lipid peroxidation levels), activating enzymes antioxidant capacity (catalases and peroxidases). Moreover, higher EP concentration (up to 0.8%) resulted in a less acceptable product compared to lower concentration (0.4%). Overall, the results from the present study suggest that the investigated EP can be used for the preservation of fresh produce instead of the current commercial sanitizing agent (chlorine); however, the method of application and conditions of application must be further assessed for every commodity tested.
Collapse
|
12
|
Optimization of Gum Arabic and Starch-Based Edible Coatings with Lemongrass Oil Using Response Surface Methodology for Improving Postharvest Quality of Whole “Wonderful” Pomegranate Fruit. COATINGS 2021. [DOI: 10.3390/coatings11040442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effects of edible coatings based on gum arabic (GA) (0.5–1.5%), maize starch (MS) (0.5–1.5%), lemongrass oil (LO) (2–4%), and glycerol (GC) (0.5–1%) developed using response surface methodology (RSM) on “Wonderful” pomegranate fruit were studied. After 42 days of storage (5 ± 1 °C, 95 ± 2% RH) and 5 days at ambient temperature (20 ± 0.2 °C and 60 ± 10% RH), whole fruit were evaluated for weight loss (%) and pomegranate juice (PJ) for total soluble solids (°Brix), titratable acidity (% Citric acid), and antioxidant capacity. The optimization procedure was done using RSM and the response variables were mainly influenced by the concentrations of MS and GA. The optimized coating consisted of GA (0.5%), MS (0.5%), LO (3%), and GC (1.5%) with desirability of 0.614 (0—minimum and 1—maximum). The predicted values of response variables, for the coating were weight loss (%) = 5.51, TSS (°Brix) = 16.45, TA (% Citric acid) = 1.50, and antioxidant capacity (RSA = 58.13 mM AAE/mL PJ and FRAP = 40.03 mM TE/mL PJ). Therefore, the optimized coating formulation is a potential postharvest treatment for “Wonderful” pomegranate to inhibit weight loss and maintain overall quality during storage and shelf-life.
Collapse
|