1
|
Boyjnath Y, Dulloo ME, Bhoyroo V, Ranghoo-Sanmukhiya VM. Ecogeographic Study of Ipomoea Species in Mauritius, Indian Ocean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2706. [PMID: 39409576 PMCID: PMC11478622 DOI: 10.3390/plants13192706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024]
Abstract
The wild relatives of crops play a critical role in enhancing agricultural resilience and sustainability by contributing valuable traits for crop improvement. Shifts in climatic conditions and human activities threaten plant genetic resources for food and agriculture (PGRFA), jeopardizing contributions to future food production and security. Studies and inventories of the extant agrobiodiversity, in terms of numbers and distribution patterns of species and their genetic diversity, are primordial for developing effective and comprehensive conservation strategies. We conducted an ecogeographic study on Ipomoea species and assessed their diversity, distribution, and ecological preferences across different topographic, altitudinal, geographical, and climatic gradients, at a total of 450 sites across Mauritius. Species distribution maps overlaid with climatic data highlighted specific ecological distribution. Principal Component Analysis (PCA) revealed species distribution was influenced by geographical factors. Regional richness analyses indicated varying densities, with some species exhibiting localized distributions and specific ecological preferences while the other species showed diverse distribution patterns. Field surveys identified 14 species and 2 subspecies out of 21 species and 2 subspecies of Ipomoea reported in Mauritius. A gap in ex situ germplasm collections was observed and several species were identified as threatened. Further investigations and a more long-term monitoring effort to better guide conservation decisions are proposed.
Collapse
Affiliation(s)
- Yakshini Boyjnath
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius; (V.B.); (V.M.R.-S.)
| | | | - Vishwakalyan Bhoyroo
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius; (V.B.); (V.M.R.-S.)
| | - Vijayanti Mala Ranghoo-Sanmukhiya
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius; (V.B.); (V.M.R.-S.)
| |
Collapse
|
2
|
Rodríguez ME, Poza-Viejo L, Maestro-Gaitán I, Schneider-Teixeira A, Deladino L, Ixtaina V, Reguera M. Shotgun proteomics profiling of chia seeds ( Salvia hispanica L.) reveals genotypic differential responses to viability loss. FRONTIERS IN PLANT SCIENCE 2024; 15:1441234. [PMID: 39211843 PMCID: PMC11358080 DOI: 10.3389/fpls.2024.1441234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Introduction Exposure to elevated temperatures and relative humidity expedites the seed aging process, finally leading to seed viability loss. In this context, certain proteins play a pivotal role in safeguarding the longevity of seeds. However, the seedproteomic response to loss viability in Salvia hispanica L., commonly known as chia, remains incompletely understood. Methods This work explores the application of proteomics as a potent tool for uncovering molecular responses to viability loss caused by artificial aging in two chia genotypes, WN and MN. Results By using a quantitative label-free proteomics analysis (LC-MS/MS), 1787 proteins wereidentified in chia seeds at a 95% confidence level, including storage proteins, heat shock proteins (HSPs), late embryogenesis abundant proteins (LEA),oleosins, reactive oxygen species (ROS)-related enzymes, and ribosomal proteins. A relatively low percentage of exclusive proteins were identified in viable and non-viable seeds. However, proteins exhibiting differential abundancebetween samples indicated variations in the genotype and physiological status. Specifically, the WN genotype showed 130 proteins with differential abundancecomparing viable and non-viable seeds, while MN displayed changes in the abundance of 174 proteins. While both showed a significant decrease in keyproteins responsible for maintaining seed functionality, longevity, and vigor withhigh-temperature and humidity conditions, such as LEA proteins or HSPs, ROS, and oleosins, distinct responses between genotypes were noted, particularly in ribosomal proteins that were accumulated in MN and diminished in WN seeds. Discussion Overall, the results emphasize the importance of evaluating changes in proteins of viable and non-viable seeds as they offer valuable insights into the underlying biological mechanisms responsible for the maintenance of chia seed integrity throughout high-temperature and humidity exposure.
Collapse
Affiliation(s)
- María Emilia Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF-UNLP), La Plata, Buenos Aires, Argentina
| | - Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Lorena Deladino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
| | - Vanesa Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF-UNLP), La Plata, Buenos Aires, Argentina
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Tang H, Krishnakumar V, Zeng X, Xu Z, Taranto A, Lomas JS, Zhang Y, Huang Y, Wang Y, Yim WC, Zhang J, Zhang X. JCVI: A versatile toolkit for comparative genomics analysis. IMETA 2024; 3:e211. [PMID: 39135687 PMCID: PMC11316928 DOI: 10.1002/imt2.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 08/15/2024]
Abstract
The life cycle of genome builds spans interlocking pillars of assembly, annotation, and comparative genomics to drive biological insights. While tools exist to address each pillar separately, there is a growing need for tools to integrate different pillars of a genome project holistically. For example, comparative approaches can provide quality control of assembly or annotation; genome assembly, in turn, can help to identify artifacts that may complicate the interpretation of genome comparisons. The JCVI library is a versatile Python-based library that offers a suite of tools that excel across these pillars. Featuring a modular design, the JCVI library provides high-level utilities for tasks such as format parsing, graphics generation, and manipulation of genome assemblies and annotations. Supporting genomics algorithms like MCscan and ALLMAPS are widely employed in building genome releases, producing publication-ready figures for quality assessment and evolutionary inference. Developed and maintained collaboratively, the JCVI library emphasizes quality and reusability.
Collapse
Affiliation(s)
- Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | | | - Xiaofei Zeng
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Zhougeng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE)Chinese Academy of Sciences (CAS)ShanghaiChina
| | - Adam Taranto
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Johnathan S. Lomas
- Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoNevadaUSA
| | - Yixing Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yumin Huang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology and College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Won Cheol Yim
- Department of Biochemistry and Molecular BiologyUniversity of NevadaRenoNevadaUSA
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro‐Biological Resources, Guangxi Key Lab for Sugarcane BiologyGuangxi UniversityNanningGuangxiChina
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| |
Collapse
|
4
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Ochar K, Kim SH. Conservation and Global Distribution of Onion ( Allium cepa L.) Germplasm for Agricultural Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3294. [PMID: 37765458 PMCID: PMC10535454 DOI: 10.3390/plants12183294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Onion (Allium cepa L.) is recognized globally as a crucial vegetable crop, prized not only for its culinary applications but also for its numerous health-promoting properties. With climate change relentlessly exerting mounting challenges to agriculture, the preservation and deployment of onion germplasm has become critical to ensuring sustainable agriculture and safeguarding food security. Global onion germplasm collections function as repositories of genetic diversity, holding within them an extensive array of valuable traits or genes. These can be harnessed to develop varieties resilient to climate adversities. Therefore, detailed information concerning onion germplasm collections from various geographical regions can bolster their utility. Furthermore, an amplified understanding of the importance of fostering international and inter-institutional collaborations becomes essential. Sharing and making use of onion genetic resources can provide viable solutions to the looming agricultural challenges of the future. In this review, we have discussed the preservation and worldwide distribution of onion germplasm, along with its implications for agricultural sustainability. We have also underscored the importance of international and interinstitutional collaboration in onion germplasm collecting and conservation for agricultural sustainability.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
| |
Collapse
|
6
|
Póvoa O, Lopes V, Barata AM, Farinha N. Monitoring Genetic Erosion of Aromatic and Medicinal Plant Species in Alentejo (South Portugal). PLANTS (BASEL, SWITZERLAND) 2023; 12:2588. [PMID: 37514203 PMCID: PMC10386371 DOI: 10.3390/plants12142588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The main goal of this work was to study the genetic erosion risk of plants with aromatic, medicinal and gastronomic applications in Portugal, particularly in the Alentejo region. The target species were coriander (Coriandrum sativum L.), hart's pennyroyal (Mentha cervina L.) and pennyroyal (Mentha pulegium L.). The methodology involved direct observations and surveys (2002/2003 and 2011). The GE formula applied in Hammer's studies was used to estimate genetic erosion. The main factors causing genetic erosion were the primary drivers of biodiversity loss: habitat loss, invasive species, and overexploitation influenced by human intervention such as the clearing of watercourses, vegetation control, grazing and desertification. The results indicate a reduction in individuals per species in Alentejo, with a net erosion loss of 11% for M. pulegium, 32% for M. cervina and 33% for C. sativum. The overall loss of accessions (genetic erosion risk) was higher in cultivated accessions (33%) than in wild accessions (11%), with an annual genetic erosion rate of 3.7% and 1.2%, respectively. The annual risk of genetic erosion for M. pulegium accessions collected in a natural habitat was 0.6%, which is much lower than the 3.7% for M. cervina. These results consolidate the importance of collecting and conserving genetic resources.
Collapse
Affiliation(s)
- Orlanda Póvoa
- VALORIZA-Centro de Investigação para a Valorização de Recursos Endógenos, Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
- Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
| | - Violeta Lopes
- Banco Português de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigação Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal
| | - Ana Maria Barata
- Banco Português de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigação Agrária e Veterinária, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal
| | - Noémia Farinha
- Instituto Politécnico de Portalegre, Praça do Município 11, 7300-110 Portalegre, Portugal
| |
Collapse
|
7
|
Obadiah CD, Adamu AA, Yahaya TO, Jafa'ar U, Dharmendra S. Phytodiversity complex of trees and shrubs in Federal University Birnin Kebbi, Kebbi state, Nigeria. ACTA ECOLOGICA SINICA 2023; 43:525-534. [DOI: 10.1016/j.chnaes.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Irshad K, Shaheed Siddiqui Z, Chen J, Rao Y, Hamna Ansari H, Wajid D, Nida K, Wei X. Bio-priming with salt tolerant endophytes improved crop tolerance to salt stress via modulating photosystem II and antioxidant activities in a sub-optimal environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1082480. [PMID: 36968419 PMCID: PMC10037113 DOI: 10.3389/fpls.2023.1082480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stress is one of the major constraints which restrain plant growth and productivity by disrupting physiological processes and stifling defense mechanisms. Hence, the present work aimed to evaluate the sustainability of bio-priming salt tolerant endophytes for improving plant salt tolerance. Paecilomyces lilacinus KUCC-244 and Trichoderma hamatum Th-16 were obtained and cultured on PDA medium containing different concentrations of NaCl. The highest salt (500 mM) tolerant fungal colonies were selected and purified. Paecilomyces at 61.3 × 10-6 conidia/ml and Trichoderma at about 64.9 × 10-3 conidia/ml of colony forming unit (CFU) were used for priming wheat and mung bean seeds. Twenty- days-old primed and unprimed seedlings of wheat and mung bean were subjected to NaCl treatments at 100 and 200 mM. Results indicate that both endophytes sustain salt resistance in crops, however T. hamatum significantly increased the growth (141 to 209%) and chlorophyll content (81 to 189%), over unprimed control under extreme salinity. Moreover, the reduced levels (22 to 58%) of oxidative stress markers (H2O2 and MDA) corresponded with the increased antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) activities (141 and 110%). Photochemical attributes like quantum yield (FV/FM) (14 to 32%) and performance index (PI) (73 to 94%) were also enhanced in bio-primed plants in comparison to control under stress. In addition, the energy loss (DIO/RC) was considerably less (31 to 46%), corresponding with lower damage at PS II level in primed plants. Also, the increase in I and P steps of OJIP curve in T. hamatum and P. lilacinus primed plants showed the availability of more active reaction centers (RC) at PS II under salt stress in comparison to unprimed control plants. Infrared thermographic images also showed that bio-primed plants were resistant to salt stress. Hence, it is concluded that the use of bio-priming with salt tolerant endophytes specifically T. hamatum can be an effective approach to mitigate the salt stress cosnequences and develop a potential salt resistance in crop plants.
Collapse
Affiliation(s)
- Khadija Irshad
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Zamin Shaheed Siddiqui
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Science, University of Florida, Apopka, FL, United States
| | - Yamna Rao
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Hafiza Hamna Ansari
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Danish Wajid
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Komal Nida
- Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
9
|
Gumede MT, Gerrano AS, Amelework AB, Modi AT. Analysis of Genetic Diversity and Population Structure of Cowpea ( Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243480. [PMID: 36559592 PMCID: PMC9780845 DOI: 10.3390/plants11243480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume crop with immense potential for nutritional and food security, income generation, and livestock feed in Sub-Saharan Africa. The crop is highly tolerant to heat and drought stresses which makes it an extremely important crop for improving resilience in crop production in the face of climate change. This study was carried out to assess the genetic diversity and population structure of 90 cowpea accessions using single nucleotide polymorphism (SNP) markers. Out of 11,940 SNPs used, 5864 SNPs were polymorphic and maintained for genome diversity analysis. Polymorphic information content (PIC) values ranged from 0.22 to 0.32 with a mean value of 0.27. The model-based Bayesian STRUCTURE analysis classified 90 cowpea accessions into four subpopulations at K = 4, while the distance-based cluster analysis grouped the accessions into three distinct clusters. The analysis of molecular variance (AMOVA) revealed that 59% and 69% of the total molecular variation was attributed to among individual variation for model-based and distance-based populations, respectively, and 18% was attributed to within individual variations. Furthermore, the low heterozygosity among cowpea accessions and the high inbreeding coefficient observed in this study suggests that the accessions reached an acceptable level of homozygosity. This study would serve as a reference for future selection and breeding programs of cowpea with desirable traits and systematic conservation of these plant genetic resources.
Collapse
Affiliation(s)
- Mbali Thembi Gumede
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
- Correspondence:
| | - Abe Shegro Gerrano
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Assefa Beyene Amelework
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plant Institute, Private Bag X293, Pretoria 0001, South Africa
| | - Albert Thembinkosi Modi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
10
|
Hudzenko VM, Buniak NM, Tsentylo LV, Demydov OA, Fedorenko IV, Fedorenko MV, Ishchenko VA, Kozelets HM, Khudolii LV, Lashuk SO, Syplyva NO. Evaluation of grain yield performance and its stability in various spring barley accessions under condition of different agroclimatic zones of Ukraine. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Two extremely urgent problems of biological and agronomic research nowadays are ensuring an optimal balance between usage of natural resources to meet rapidly growing needs for food production and preservation of biodiversity. It is also important to extend the genetic diversity of the main crop varieties in agroecosystems. At the same time, modern varieties should be characterized by a combination of high yield and preserving yield stability under variable conditions. Solving the outlined tasks requires comprehensive research and involvement in breeding process of the genetical diversity concentrated in genebanks of the world. Barley (Hordeum vulgare L.) is one of the most important crops that satisfy the various needs of humanity. In respect to this, in 2020–2022, a multi-environment trial was conducted in three agroclimatic zones of Ukraine (Forest-Steppe, Polissia, and Northern Steppe). We studied 44 spring barley collection accessions of different ecological and geographical origin, different subspecies and groups of botanical varieties which were obtained from the National Center for Plant Genetic Resources of Ukraine. Statistical indices (Hom, Sc) and graphical models (GGE biplot, AMMI) were used to interpret the yield performance and its stability. Both individual ecological sites in different years and combinations of different sites and years of trials were characterized for productivity, discriminating power and representativeness. The environments differed quite strongly among themselves in terms of these indicators. It was established that most of the genotypes were characterized by higher adaptability to individual environmental conditions (stability in different years), compared to adaptability for all agroclimatic zones (wide adaptation). A strong cross-over genotype by environment interaction was found for most studied accessions. Nevertheless, both genotypes with very high stability in only one agroclimatic zone (Amil (UKR), Gateway (CAN)) and genotypes with a combination of high adaptability to one or two ecological niches and relatively higher wide adaptability (Stymul (UKR), Ly-1064 (UKR), Rannij (KAZ), Shedevr (UKR), and Arthur (CZE)) were identified. There were also the accessions which did not show maximum performance in the individual sites, but had relatively higher wide adaptability (Ly-1059 (UKR), Ly-1120 (UKR), Diantus (UKR), and Danielle (CZE)). In general, the naked barley genotypes were inferior to the covered ones in terms of yield potential and wide adaptability, but at the same time, some of them (CDC ExPlus (CAN), CDC Gainer (CAN), and Roseland (CAN)), accordingly to the statistical indicators, had increased stability in certain ecological sites. Among naked barley accessions relatively better wide adaptability according to the graphical analysis was found in the accession CDC McGwire (CAN), and by the statistical parameters CDC ExPlus (CAN) was better than standard. The peculiarities of yield manifestation and its variability in different spring barley genotypes in the multi-environment trial revealed in this study will contribute to the complementation and deepening of existing data in terms of the genotype by environment interaction. Our results can be used in further studies for developing spring barley variety models both with specific and wide adaptation under conditions of different agroclimatic zones of Ukraine. The disitnguished accessions of different origin and botanical affiliation are recommended for creating a new breeding material with the aim of simultaneously increasing yield potential and stability, as well as widening the genetic basis of spring barley varieties.
Collapse
|
11
|
Zhang MX, Chen Y, Guo JX, Zhang R, Bi YQ, Wei XX, Niu H, Zhang CH, Li MH. Complex ecological and socioeconomic impacts on medicinal plant diversity. Front Pharmacol 2022; 13:979890. [PMID: 36339592 PMCID: PMC9627218 DOI: 10.3389/fphar.2022.979890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Medicinal plant diversity (MPD) is an important component of plant diversity. Over-collection based on medicinal and economic value has the potential to damage the stability of the regional ecosystem. It is important to understand the current distribution of MPD and the factors influencing it. However, it is still unclear whether environmental and socioeconomic conditions have an impact on their distribution. We selected the Inner Mongolia as a representative study area which covers a wide area, accounting for 12.29% of China’s national land area and 0.79% of the world’s land area. At the same time, the region is a long-standing traditional medicinal area for Mongolians in China. Therefore, the region is significantly influenced by changes in environmental factors and socio-economic factors. We used 9-years field survey of the distribution of medicinal plants in Inner Mongolia for assessing the distribution of MPD as influenced by environmental and socioeconomic activities by combining spatial analyses, species distribution models, and generalized additive models. The results from the spatial analysis show that the western region of Inner Mongolia is the main cold spot area of the MPD, and the central-eastern and northeastern regions of Inner Mongolia are the main hot spot areas of the MPD. At the same time, the distribution of cold spots and hot spots of MPD is more obvious at large spatial scales, and with the refinement of spatial scales, the cold spots in scattered areas are gradually revealed, which is indicative for the conservation and development of MPD at different spatial scales. Under the future climate change of shared socioeconomic pathways (SSP), areas with high habitat suitability for medicinal plants remain mainly dominated by the Yellow River, Yin Mountains, and Greater Khingan Range. Notably, the SSP245 development pathway remains the most significant concern in either long- or short-term development. The nonlinear relationship between the driving factors of MPD at different spatial scales shows that temperature, precipitation and socioeconomic development do have complex effects on MPD. The presence of a certain temperature, altitude, and precipitation range has an optimal facilitation effect on MPD, rather than a single facilitation effect. This complex nonlinear correlation provides a reference for further studies on plant diversity and sustainable development and management. In this study, the spatial distribution of medicinal plant resources and the extent to which they are driven by ecological and socioeconomic factors were analyzed through a macroscopic approach. This provides a reference for larger-scale studies on the environmental and socioeconomic influences on the distribution of plant resources.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China
- Baotou Medical College, Baotou, China
| | - Yuan Chen
- Inner Mongolia Medical University, Hohhot, China
| | | | - Ru Zhang
- Baotou Medical College, Baotou, China
| | - Ya-Qiong Bi
- Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China
| | | | - Hui Niu
- Baotou Medical College, Baotou, China
| | - Chun-Hong Zhang
- Baotou Medical College, Baotou, China
- *Correspondence: Chun-Hong Zhang, ; Min-Hui Li,
| | - Min-Hui Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Institute of Traditional Chinese and Mongolian Medicine, Hohhot, China
- Baotou Medical College, Baotou, China
- Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China
- *Correspondence: Chun-Hong Zhang, ; Min-Hui Li,
| |
Collapse
|
12
|
Hua Z, Jiang C, Song S, Tian D, Chen Z, Jin Y, Zhao Y, Zhou J, Zhang Z, Huang L, Yuan Y. Accurate identification of taxon-specific molecular markers in plants based on DNA signature sequence. Mol Ecol Resour 2022; 23:106-117. [PMID: 35951477 DOI: 10.1111/1755-0998.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Accurate identification of plants remains a significant challenge for taxonomists and is the basis for plant diversity conservation. Although DNA barcoding methods are commonly used for plant identification, these are limited by the low amplification success and low discriminative power of selected genomic regions. In this study, we developed a k-mer-based approach, the DNA signature sequence (DSS), to accurately identify plant taxon-specific markers, especially at the species level. DSS is a constant-length nucleotide sequence capable of identifying a taxon and distinguishing it from other taxa. In this study, we performed the first large-scale study of DSS markers in plants. DSS candidates of 3,899 angiosperm plant species were calculated based on a chloroplast dataset with 4,356 assemblies. Using Sanger sequencing of PCR amplicons and high-throughput sequencing, DSSs were validated in four and 165 species, respectively. Based on this, the universality of the DSSs was over 79.38%. Several indicators influencing DSS marker identification and detection have also been evaluated, and common criteria for DSS application in plant identification have been proposed.
Collapse
Affiliation(s)
- Zhongyi Hua
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Shuhui Song
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Dongmei Tian
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ziyuan Chen
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yan Jin
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Junhui Zhou
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Zhang Zhang
- China National Center for Bioinformation, 100101, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
13
|
Mwangi JW, Okoth OR, Kariuki MP, Piero NM. Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilckzek) genotypes. J Genet Eng Biotechnol 2021; 19:142. [PMID: 34570295 PMCID: PMC8476662 DOI: 10.1186/s43141-021-00245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mung bean is a pulse crop principally grown in the tropic and subtropic parts of the world for its nutrient-rich seeds. Seven mung beans accessions from Eastern Kenya were evaluated using thirteen phenotypic traits. In addition, 10 SSR markers were used to determine their genetic diversity and population structure. This aimed at enhancing germplasm utilization for subsequent mung bean breeding programs. RESULTS Analysis of variance for most of the phenology traits showed significant variation, with the yield traits recording the highest. The first three principal components (PC) explained 83.4% of the overall phenotypic variation, with the highest (PC1) being due to variation of majority of the traits studied such as pod length, plant height, and seeds per pod. The dendogram revealed that the improved genotypes had common ancestry with the local landraces. The seven mung beans were also genotyped using 10 microsatellite markers, eight of which showed clear and consistent amplification profiles with scorable polymorphisms in all the studied genotypes. Genetic diversity, allele number, and polymorphic information content (PIC) were determined using powermarker (version 3.25) and phylogenetic tree constructed using DARWIN version 6.0.12. Analysis of molecular variance (AMOVA) was calculated using GenALEx version 6.5. A total of 23 alleles were detected from the seven genotypes on all the chromosomes studied with an average of 2.875 across the loci. The PIC values ranged from 0.1224 (CEDG056) to 0.5918 (CEDG092) with a mean of 0.3724. Among the markers, CEDG092 was highly informative while the rest were reasonably informative except CEDG056, which was less informative. Gene diversity ranged from 0.1836 (CEDG050) to 0.5102 (CDED088) with an average of 0.3534. The Jaccards dissimilarity matrix indicated that genotypes VC614850 and N26 had the highest level of dissimilarity while VC637245 and N26 had lowest dissimilarity index. The phylogenetic tree grouped the genotypes into three clusters as revealed by population structure analysis (K = 3), with cluster III having one unique genotype (VC6137B) only. AMOVA indicated that the highest variation (99%) was between individual genotype. In addition, marker traits association analysis revealed 18 significant associations (P < 0.05). CONCLUSION These findings indicate sufficient variation among the studied genotypes that can be considered for germplasm breeding programs.
Collapse
Affiliation(s)
- Jedidah Wangari Mwangi
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.
| | - Oduor Richard Okoth
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | | | - Ngugi Mathew Piero
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
14
|
Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13052856] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review presents a comprehensive and systematic study of the field of bacterial plant biostimulants and considers the fundamental and innovative principles underlying this technology. Plant biostimulants are an important tool for modern agriculture as part of an integrated crop management (ICM) system, helping make agriculture more sustainable and resilient. Plant biostimulants contain substance(s) and/or microorganisms whose function when applied to plants or the rhizosphere is to stimulate natural processes to enhance plant nutrient uptake, nutrient use efficiency, tolerance to abiotic stress, biocontrol, and crop quality. The use of plant biostimulants has gained substantial and significant heed worldwide as an environmentally friendly alternative to sustainable agricultural production. At present, there is an increasing curiosity in industry and researchers about microbial biostimulants, especially bacterial plant biostimulants (BPBs), to improve crop growth and productivity. The BPBs that are based on PGPR (plant growth-promoting rhizobacteria) play plausible roles to promote/stimulate crop plant growth through several mechanisms that include (i) nutrient acquisition by nitrogen (N2) fixation and solubilization of insoluble minerals (P, K, Zn), organic acids and siderophores; (ii) antimicrobial metabolites and various lytic enzymes; (iii) the action of growth regulators and stress-responsive/induced phytohormones; (iv) ameliorating abiotic stress such as drought, high soil salinity, extreme temperatures, oxidative stress, and heavy metals by using different modes of action; and (v) plant defense induction modes. Presented here is a brief review emphasizing the applicability of BPBs as an innovative exertion to fulfill the current food crisis.
Collapse
|