1
|
Huang X, Zhu F, Wang X, Zhang B. Automatic Measurement of Seed Geometric Parameters Using a Handheld Scanner. SENSORS (BASEL, SWITZERLAND) 2024; 24:6117. [PMID: 39338862 PMCID: PMC11436011 DOI: 10.3390/s24186117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/30/2024]
Abstract
Seed geometric parameters are important in yielding trait scorers, quantitative trait loci, and species recognition and classification. A novel method for automatic measurement of three-dimensional seed phenotypes is proposed. First, a handheld three-dimensional (3D) laser scanner is employed to obtain the seed point cloud data in batches. Second, a novel point cloud-based phenotyping method is proposed to obtain a single-seed 3D model and extract 33 phenotypes. It is connected by an automatic pipeline, including single-seed segmentation, pose normalization, point cloud completion by an ellipse fitting method, Poisson surface reconstruction, and automatic trait estimation. Finally, two statistical models (one using 11 size-related phenotypes and the other using 22 shape-related phenotypes) based on the principal component analysis method are built. A total of 3400 samples of eight kinds of seeds with different geometrical shapes are tested. Experiments show: (1) a single-seed 3D model can be automatically obtained with 0.017 mm point cloud completion error; (2) 33 phenotypes can be automatically extracted with high correlation compared with manual measurements (correlation coefficient (R2) above 0.9981 for size-related phenotypes and R2 above 0.8421 for shape-related phenotypes); and (3) two statistical models are successfully built to achieve seed shape description and quantification.
Collapse
Affiliation(s)
- Xia Huang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China;
- Special Robot Application Technology Research Institute, Chengdu 611730, China
| | - Fengbo Zhu
- School of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
| | - Xiqi Wang
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China;
| | - Bo Zhang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China;
- Special Robot Application Technology Research Institute, Chengdu 611730, China
| |
Collapse
|
2
|
Abdelaal M, AL-Huqail AA, Alghanem SMS, Alhaithloul HAS, Al-Robai SA, Abeed AHA, Dakhil MA, El-Barougy RF, Yahia AA. Population status, habitat preferences and predictive current and future distributions of three endangered Silene species under changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1336911. [PMID: 38966141 PMCID: PMC11222647 DOI: 10.3389/fpls.2024.1336911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
One of the most crucial steps in the practical conservation of endangered endemic mountain plants is to address their population size status and habitat requirements concurrently with understanding their response to future global warming. Three endangered Silene species-Silene leucophylla Boiss., S. schimperiana Boiss., and S. oreosinaica Chowdhuri-in Egypt were the focus of the current study. These species were examined for population status change, habitat quality variables (topography, soil features, and threats), and predictive current and future distributions. To find population size changes, recent field surveys and historical records were compared. Using Random Forest (RF) and Canonical Correspondence Analysis (CCA), habitat preferences were assessed. To forecast present-day distribution and climate change response, an ensemble model was used. The results reported a continuous decline in the population size of the three species. Both RF and CCA addressed that elevation, soil texture (silt, sand, and clay fractions), soil moisture, habitat-type, chlorides, electric conductivity, and slope were among the important variables associated with habitat quality. The central northern sector of the Saint Catherine area is the hotspot location for the predictive current distribution of three species with suitable areas of 291.40, 293.10, and 58.29 km2 for S. leucophylla, S. schimperiana, and S. oreosinaica, respectively. Precipitation-related variables and elevation were the key predictors for the current distribution of three Silene species. In response to climate change scenarios, the three Silene species exhibited a gradual contraction in the predictive suitable areas with upward shifts by 2050 and 2070. The protection of these species and reintroduction to the predicted current and future climatically suitable areas are urgent priorities. Ex-situ conservation and raised surveillance, as well as fenced enclosures may catapult as promising and effective approaches to conserving such threatened species.
Collapse
Affiliation(s)
- Mohamed Abdelaal
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Arwa Abdulkreem AL-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohammed A. Dakhil
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Reham F. El-Barougy
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Aya A. Yahia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Marcel H, Javier MGJ, Emilio C, Roman H, Jose Luis RL. Seed shape and size of Silene latifolia, differences between sexes, and influence of the parental genome in hybrids with Silene dioica. FRONTIERS IN PLANT SCIENCE 2024; 15:1297676. [PMID: 38529065 PMCID: PMC10961389 DOI: 10.3389/fpls.2024.1297676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
Introduction Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. Methods Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. Results We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. Discussion Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.
Collapse
Affiliation(s)
- Hubinský Marcel
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Cervantes Emilio
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA)-CSIC, Salamanca, Spain
| | - Hobza Roman
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Rodríguez Lorenzo Jose Luis
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
4
|
Rodríguez-Lorenzo JL, Martín-Gómez JJ, Juan A, Tocino Á, Cervantes E. Quantitative Analysis of Seed Surface Tubercles in Silene Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3444. [PMID: 37836184 PMCID: PMC10574879 DOI: 10.3390/plants12193444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In the Caryophyllaceae, seed surfaces contain cell protrusions, of varying sizes and shapes, called tubercles. Tubercles have long been described in many species, but quantitative analyses with measurements of size and shape are lacking in the literature. Based on optical photography, the seeds of Silene were classified into four types: smooth, rugose, echinate and papillose. Seeds in each of these groups have characteristic geometrical properties: smooth seeds lack tubercles and have the highest values of circularity and solidity in their lateral views, while papillose seeds have the largest tubercles and lowest values of circularity and solidity both in lateral and dorsal views. Here, tubercle width, height and slope, maximum and mean curvature values and maximum to mean curvature ratio were obtained for representative seeds of a total of 31 species, 12 belonging to Silene subg. Behenantha and 19 to S. subg. Silene. The seeds of the rugose type had lower values of curvature. Additionally, lower values of curvature were found in species of S. subg. Silene in comparison with S. subg. Behenantha. The seeds of S. subg. Behenantha had higher values of tubercle height and slope and higher values of maximum and average curvature and maximum to mean curvature ratio.
Collapse
Affiliation(s)
- José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic;
| | - José Javier Martín-Gómez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Cordel de Merinas 40, 37008 Salamanca, Spain;
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, 03690 Alicante, Spain;
| | - Ángel Tocino
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain;
| | - Emilio Cervantes
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Cordel de Merinas 40, 37008 Salamanca, Spain;
| |
Collapse
|
5
|
Cervantes E, Rodríguez-Lorenzo JL, Martín-Gómez JJ, Tocino Á. Curvature Analysis of Seed Silhouettes in Silene L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2439. [PMID: 37447000 DOI: 10.3390/plants12132439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The application of seed morphology to descriptive systematics requires methods for shape analysis and quantification. The complexity of lateral and dorsal views of seeds of Silene species is investigated here by the application of the Elliptic Fourier Transform (EFT) to representative seeds of four morphological types: smooth, rugose, echinate and papillose. The silhouettes of seed images in the lateral and dorsal views are converted to trigonometric functions, whose graphical representations reproduce them with different levels of accuracy depending on the number of harmonics. A general definition of seed shape in Silene species is obtained by equations based on 40 points and 20 harmonics, while the detailed representation of individual tubercles in each seed image requires between 100 and 200 points and 60-80 harmonics depending on their number and complexity. Smooth-type seeds are accurately represented with a low number of harmonics, while rugose, echinate and papillose seeds require a higher number. Fourier equations provide information about tubercle number and distribution and allow the analysis of curvature. Further estimation of curvature values in individual tubercles reveals differences between seeds, with higher values of curvature in S. latifolia, representative of echinate seeds, and lower in S. chlorifolia with rugose seeds.
Collapse
Affiliation(s)
- Emilio Cervantes
- Instituto de Recursos Naturales y Agrobiología (Consejo Superior de Investigaciones Científicas), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - José Javier Martín-Gómez
- Instituto de Recursos Naturales y Agrobiología (Consejo Superior de Investigaciones Científicas), Cordel de Merinas 40, 37008 Salamanca, Spain
| | - Ángel Tocino
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
| |
Collapse
|
6
|
Comparison of Seed Images with Geometric Models, an Approach to the Morphology of Silene (Caryophyllaceae). TAXONOMY 2023. [DOI: 10.3390/taxonomy3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Seed morphological description is traditionally based on adjectives, which originated from the comparison with other shapes, including geometric figures. Nevertheless, descriptions based on this feature are not quantitative and measurements giving the percentage of similarity of seeds with reference figures are not available in the literature. Lateral views of Silene seeds resemble the cardioid and cardioid-derived figures. Dorsal views, nonetheless, resemble ellipses and derivatives, allowing seed shape quantification by comparison with defined geometric figures. In this work, we apply already-described models as well as new models to the morphological analysis of 51 Silene species. Our data revealed the existence of a link between lateral and dorsal models. Lateral models closed in the hilum region (models LM2 and LM4) were associated with those convex models of the dorsal seed views (DM1-DM4, DM10). Lateral models more open around the hilum region adjusted to seeds characterized as dorso canaliculata type better, i.e., to those geometric models with partial concavities in their dorsal views. The relationship between lateral and dorsal models, as well as between the models to their utility in taxonomy, is discussed.
Collapse
|
7
|
Martín-Gómez JJ, Rodríguez-Lorenzo JL, Tocino Á, Janoušek B, Juan A, Cervantes E. The Outline of Seed Silhouettes: A Morphological Approach to Silene (Caryophyllaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3383. [PMID: 36501421 PMCID: PMC9737566 DOI: 10.3390/plants11233383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Seed morphology is an important source of information for plant taxonomy. Nevertheless, the characters under study are diverse, and a simple, unified method is lacking in the literature. A new method for the classification of seeds of the genus Silene based on optical images and image analysis has recently been described on the basis of morphological measurements of the lateral seed views. According to the outline of their silhouettes, seeds from 52 species (49 of Silene and three related species) were classified in three groups: smooth, rugose and echinate, revealing remarkable differences between these groups. This methodology has been applied here to 51 new species, making a total of 100 species of Silene analyzed so far. According to our data, a new group was described, termed papillose. The results showed morphological differences between the four mentioned seed groups, with reduced values of circularity for dorsal and lateral seed views in the papillose and echinate groups and reduced values of solidity in the papillose seeds. The method was applied to the analysis of individual as well as to average seed silhouettes and some of the differences between groups were maintained in both cases.
Collapse
Affiliation(s)
| | - José Luis Rodríguez-Lorenzo
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Ángel Tocino
- Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
| | - Bohuslav Janoušek
- Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos Naturales, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
| | | |
Collapse
|
8
|
New Geometric Models for Shape Quantification of the Dorsal View in Seeds of Silene Species. PLANTS 2022; 11:plants11070958. [PMID: 35406938 PMCID: PMC9002935 DOI: 10.3390/plants11070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
The description of shape in Silene seeds is based on adjectives coined by naturalists in the 19th century. The expressions reniform, dorso plana, and dorso canaliculata were applied in reference to lateral or dorsal views of seeds, but the characters described can be submitted now to an analytical description by quantitative methods, allowing shape quantification and the comparison between species or populations. A quantitative morphological analysis is based on the comparison with geometric models that adjust to the shape of seeds. Morphological analysis of the dorsal view of Silene seeds based on geometric models is applied here to 26 seed populations belonging to 12 species. According to their dorsal views, the seeds are classified as convex and non-convex. New geometric models are presented for both types, including figures such as super-ellipses and modified ellipses. The values of J index (percent of similarity of a seed image with the model) are obtained in representative seed samples from diverse populations and species. The quantitative description of seed shape based on the comparison with geometric models allows the study of variation in shape between species and in populations, as well as the identification of seeds in Silene species. The method is of application to other plant species.
Collapse
|
9
|
Martín-Gómez JJ, Porceddu M, Bacchetta G, Cervantes E. Seed Morphology in Species from the Silene mollissima Aggregate (Caryophyllaceae) by Comparison with Geometric Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:901. [PMID: 35406881 PMCID: PMC9002821 DOI: 10.3390/plants11070901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/14/2023]
Abstract
The description of seed shape by comparison with geometric models allows shape quantification, providing the means for an accurate comparison between different species or populations. Geometric models described for the lateral and dorsal views of the seeds of Silene species are applied to the quantification of the shape in the seeds belonging to twenty populations of the eleven taxa of S. mollissima aggregate. Cardioid models LM1, LM5 and LM6 adjust differentially to the lateral views of the seeds, while models DM1, DM5 and DM6 are applied to the dorsal views of the seeds. Quantification of the lateral view of seeds with LM5 results in two groups of species of different geographic origin. The seeds more resembling DM5 include S. andryalifolia, S. badaroi, S. gazulensis, S. hifacensis and S. tomentosa, i.e., the taxa with a continental distribution from southern Spain to northern Italy; in contrast, the group of seeds with lower similarity to DM5 includes those from species in northern Africa and the Mediterranean Tyrrhenian islands: S. auricolifolia, S. hicesiae, S. ichnusae, S. mollissima, S. oenotriae and S. velutina. The description of the seed shape based on geometric models contributes to investigating the relationships between related species and constitutes a promising technique for taxonomy.
Collapse
Affiliation(s)
- José Javier Martín-Gómez
- Instituto de Recursos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Cordel de Merinas 40, E-37008 Salamanca, Spain; (J.J.M.-G.); (E.C.)
| | - Marco Porceddu
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari (UNICA), Viale Sant’Ignazio da Laconi 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari (UNICA), Viale Sant’Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| | - Gianluigi Bacchetta
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari (UNICA), Viale Sant’Ignazio da Laconi 9-11, 09123 Cagliari, Italy;
- Centre for the Conservation of Biodiversity (CCB), Life and Environmental Sciences Department, University of Cagliari (UNICA), Viale Sant’Ignazio da Laconi 11-13, 09123 Cagliari, Italy
| | - Emilio Cervantes
- Instituto de Recursos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Cordel de Merinas 40, E-37008 Salamanca, Spain; (J.J.M.-G.); (E.C.)
| |
Collapse
|
10
|
Geometric Models for Seed Shape Description and Quantification in the Cactaceae. PLANTS 2021; 10:plants10112546. [PMID: 34834909 PMCID: PMC8620750 DOI: 10.3390/plants10112546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Seed shape in species of the Cactaceae is described by comparison with geometric models. Three new groups of models are presented, two for symmetric seeds, and a third group for asymmetric seeds. The first two groups correspond, respectively, to superellipses and the combined equations of two semi-ellipses. The third group contains models derived from the representation of polar equations of Archimedean spirals that define the shape of asymmetric seeds in genera of different subfamilies. Some of the new models are geometric curves, while others are composed with a part resulting from the average silhouettes of seeds. The application of models to seed shape quantification permits the analysis of variation in seed populations, as well as the comparison of shape between species. The embryos of the Cactaceae are of the peripheral type, strongly curved and in contact with the inner surface of the seed coat. A relationship is found between seed elongation and the models, in which the genera with elongated seeds are represented by models with longer trajectories of the spiral. The analysis of seed shape opens new opportunities for taxonomy and allows quantification of seed shape in species of the Cactaceae.
Collapse
|
11
|
Seed Geometry in the Vitaceae. PLANTS 2021; 10:plants10081695. [PMID: 34451740 PMCID: PMC8399696 DOI: 10.3390/plants10081695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
The Vitaceae Juss., in the basal lineages of Rosids, contains sixteen genera and 950 species, mainly of tropical lianas. The family has been divided in five tribes: Ampelopsideae, Cisseae, Cayratieae, Parthenocisseae and Viteae. Seed shape is variable in this family. Based on new models derived from equations representing heart and water drop curves, we describe seed shape in species of the Vitaceae. According to their similarity to geometric models, the seeds of the Vitaceae have been classified in ten groups. Three of them correspond to models before described and shared with the Arecaceae (lenses, superellipses and elongated water drops), while in the seven groups remaining, four correspond to general models (waterdrops, heart curves, elongated heart curves and other elongated models) and three adjust to the silhouettes of seeds in particular genera (heart curves of Cayratia and Pseudocayratia, heart curves of the Squared Heart Curve (SqHC) type of Ampelocissus and Ampelopsis and Elongated Superellipse-Heart Curves (ESHCs), frequent in Tetrastigma species and observed also in Cissus species and Rhoicissus rhomboidea). The utilities of the application of geometric models for seed description and shape quantification in this family are discussed.
Collapse
|
12
|
Taxonomic Revisiting and Phylogenetic Placement of Two Endangered Plant Species: Silene leucophylla Boiss. and Silene schimperiana Boiss. (Caryophyllaceae). PLANTS 2021; 10:plants10040740. [PMID: 33918962 PMCID: PMC8070032 DOI: 10.3390/plants10040740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022]
Abstract
The genus Silene L. is one of the largest genera in Caryophyllaceae, and is distributed in the Northern Hemisphere and South America. The endemic species Silene leucophylla and the near-endemic S. schimperiana are native to the Sinai Peninsula, Egypt. They have reduced population size and are endangered on national and international scales. These two species have typically been disregarded in most studies of the genus Silene. This research integrates the Scanning Electron Microscope (SEM), species micromorphology, and the phylogenetic analysis of four DNA markers: ITS, matK, rbcL and psb-A/trn-H. Trichomes were observed on the stem of Silene leucophylla, while the S. schimperiana has a glabrous stem. Irregular epicuticle platelets with sinuate margin were found in S. schimperiana. Oblong, bone-shaped, and irregularly arranged epidermal cells were present on the leaf of S. leucophylla, while Silene schimperiana leaf has "tetra-, penta-, hexa-, and polygonal" epidermal cells. Silene leucophylla and S. schimperiana have amphistomatic stomata. The Bayesian phylogenetic analysis of each marker individually or in combination represented the first phylogenetic study to reveal the generic and sectional classification of S. leucophylla and S. schimperiana. Two Silene complexes are proposed based on morphological and phylogenetic data. The Leucophylla complex was allied to section Siphonomorpha and the Schimperiana complex was related to section Sclerocalycinae. However, these two complexes need further investigation and more exhaustive sampling to infer their complex phylogenetic relationships.
Collapse
|