1
|
Padhan B, Ray M, Patel M, Patel R. Production and Bioconversion Efficiency of Enzyme Membrane Bioreactors in the Synthesis of Valuable Products. MEMBRANES 2023; 13:673. [PMID: 37505039 PMCID: PMC10384387 DOI: 10.3390/membranes13070673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The demand for bioactive molecules with nutritional benefits and pharmaceutically important properties is increasing, leading researchers to develop modified production strategies with low-cost purification processes. Recent developments in bioreactor technology can aid in the production of valuable products. Enzyme membrane bioreactors (EMRs) are emerging as sustainable synthesis processes in various agro-food industries, biofuel applications, and waste management processes. EMRs are modified reactors used for chemical reactions and product separation, particularly large-molecule hydrolysis and the conversion of macromolecules. EMRs generally produce low-molecular-weight carbohydrates, such as oligosaccharides, fructooligosaccharides, and gentiooligosaccharides. In this review, we provide a comprehensive overview of the use of EMRs for the production of valuable products, such as oligosaccharides and oligodextrans, and we discuss their application in the bioconversion of inulin, lignin, and sugars. Furthermore, we critically summarize the application and limitations of EMRs. This review provides important insights that can aid in the production of valuable products by food and pharmaceutical industries, and it is intended to assist scientists in developing improved quality and environmentally friendly prebiotics using EMRs.
Collapse
Affiliation(s)
- Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhubanti Ray
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21938, Republic of Korea
| |
Collapse
|
2
|
Stability Enhancement of Aldehyde Dehydrogenase from Anoxybacillus geothermalis Strain D9 Immobilized onto Seplite LX120. Catalysts 2023. [DOI: 10.3390/catal13020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Enzyme stability is regarded as an important criterion for an industrial biocatalyst. Aldehyde dehydrogenase (ALDH) from A. geothermalis strain D9 was previously reported to exhibit good thermostability. However, this enzyme is still not suited to use in harsh environments. In this current work, we aim to see the viability of ALDH in terms of stability when immobilized into Seplite LX120. The purified ALDH was successfully immobilized via physical adsorption at 4 h with 1.25 mg/mL enzyme loading. The immobilized ALDH exhibited improved stability compared to free ALDH as the optimum temperature increased up to 80 °C and was stable with temperatures ranging from 30 to 90 °C. It was also stable in broad pH, ranging from pH 4 to pH 12. Moreover, more than 50% of the immobilized ALDH activity was retained after being stored at 25 °C and 4 °C for 9 and 11 weeks, respectively. The reusability of immobilized ALDH is up to seven cycles. The corroboration of ALDH immobilized on the Seplite LX120 was verified via Fourier-transform infrared spectroscopy, scanning electron microscopy, and a reduction in the surface area. The improved features of immobilized ALDH, especially in enzyme stability, are important for future applications.
Collapse
|
3
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
4
|
Mills R, Vogler RJ, Bernard M, Concolino J, Hersh LB, Wei Y, Hastings JT, Dziubla T, Baldridge KC, Bhattacharyya D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. COMMUNICATIONS MATERIALS 2022; 3:34. [PMID: 36406238 PMCID: PMC9674191 DOI: 10.1038/s43246-022-00256-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Ronald J. Vogler
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Jacob Concolino
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeffrey Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
5
|
Ronzhin NO, Mogilnaya OA, Posokhina ED, Bondar VS. Reusable System for Phenol Detection in an Aqueous Medium Based on Nanodiamonds and Extracellular Oxidase from Basidiomycete Neonothopanus nambi. DOKL BIOCHEM BIOPHYS 2021; 499:220-224. [PMID: 34426915 DOI: 10.1134/s1607672921040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022]
Abstract
A reusable system for phenol determination in an aqueous medium was obtained by adsorption of extracellular oxidase from fungus Neonothopanus nambi onto modified nanodiamonds (MND) synthesized by detonation. It was found that the enzyme strongly binds to MND and exhibits catalytic activity in the reaction of co-oxidation of phenol with 4-aminoantipyrine without the addition of hydrogen peroxide. In the presence of the MND-oxidase complex, a significantly (by an order of magnitude) higher yield of the reaction product is recorded as compared to the yield in the presence of a free enzyme; the mechanism of the revealed effect is discussed. Model experiments have demonstrated the multiple use of the MND-oxidase complex for testing phenol in aqueous samples. The immobilized enzyme exhibits functional activity during long-term (2 months) storage of the MND-oxidase complex at 4°C. The data obtained create the prerequisites for using the created system in environmental monitoring of water pollution with phenol.
Collapse
Affiliation(s)
- N O Ronzhin
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.
| | - O A Mogilnaya
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - E D Posokhina
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - V S Bondar
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
6
|
Qi L, Qiao J. Design of Switchable Enzyme Carriers Based on Stimuli-Responsive Porous Polymer Membranes for Bioapplications. ACS APPLIED BIO MATERIALS 2021; 4:4706-4719. [PMID: 35007021 DOI: 10.1021/acsabm.1c00338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Design of efficient enzyme carriers, where enzymes are conjugated to supports, has become an attractive research avenue. Immobilized enzymes are advantageous for practical applications because of their convenience in handling, ease of separation, and good reusability. However, the main challenge is that these traditional enzyme carriers are unable to regulate the enzymolysis efficiency or to protect the enzymes from proteolytic degradation, which restricts their effectiveness of enzymes in bioapplications. Enlightened by the stimuli-responsive channels in the natural cell membranes, conjugation of the enzymes within flat-sheet stimuli-responsive porous polymer membranes (SR-PPMs) as artificial cell membranes is an efficient strategy for circumventing this challenge. Controlled by the external stimuli, the multifunctional polymer chains, which are incorporated within the membranes and attached to the enzyme, change their structures to defend the enzyme from the external environmental disturbances and degradation by proteinases. Specifically, smart SR-PPM enzyme carriers (SR-PPMECs) not only permit convective substrate transfer through the accessible porous network, dramatically improving enzymolysis efficiency due to the adjustable pore sizes and the confinement effect, but they also act as molecular switches for regulating its permeability and selectivity. In this review, the concept of SR-PPMECs is presented. It covers the latest developments in design strategies of flat-sheet SR-PPFMs, fabrication protocols of SR-PPFMECs, strategies for the regulation of enzymolysis efficiency, and their cutting-edge bioapplications.
Collapse
Affiliation(s)
- Li Qi
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiao
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Extracellular Oxidase from the Neonothopanus nambi Fungus as a Promising Enzyme for Analytical Applications. Protein J 2021; 40:731-740. [PMID: 34143382 DOI: 10.1007/s10930-021-10010-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The extracellular enzyme with oxidase function was extracted from the Neonothopanus nambi luminescent fungus by using mild processing of mycelium with β-glucosidase and then isolated by gel-filtration chromatography. The extracted enzyme is found to be a FAD-containing protein, catalyzing phenol co-oxidation with 4-aminoantipyrine without addition of H2O2, which distinguishes it from peroxidases. This fact allowed us to assume that this enzyme may be a mixed-function oxidase. According to gel-filtration chromatography and SDS-PAGE, the oxidase has molecular weight of 60 kDa. The enzyme exhibits maximum activity at 55-70 °C and pH 5.0. Kinetic parameters Km and Vmax of the oxidase for phenol were 0.21 mM and 0.40 µM min-1. We suggest that the extracted enzyme can be useful to develop a simplified biosensor for colorimetric detection of phenol in aqueous media, which does not require using hydrogen peroxide.
Collapse
|
8
|
Islam M, Vogler RJ, Abdullah Al Hasnine SM, Hernández S, Malekzadeh N, Hoelen TP, Hatakeyama ES, Bhattacharyya D. Mercury Removal from Wastewater Using Cysteamine Functionalized Membranes. ACS OMEGA 2020; 5:22255-22267. [PMID: 32923783 PMCID: PMC7482228 DOI: 10.1021/acsomega.0c02526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/13/2020] [Indexed: 05/04/2023]
Abstract
This study demonstrates a three-step process consisting of primary pre-filtration followed by ultrafiltration (UF) and adsorption with thiol-functionalized microfiltration membranes (thiol membranes) to effectively remove mercury sulfide nanoparticles (HgS NPs) and dissolved mercury (Hg2+) from wastewater. Thiol membranes were synthesized by incorporating either cysteine (Cys) or cysteamine (CysM) precursors onto polyacrylic acid (PAA)-functionalized polyvinylidene fluoride membranes. Carbodiimide chemistry was used to cross-link thiol (-SH) groups on membranes for metal adsorption. The thiol membranes and intermediates of the synthesis were tested for permeability and long-term mercury removal using synthetic waters and industrial wastewater spiked with HgS NPs and a Hg2+ salt. Results show that treatment of the spiked wastewater with a UF membrane removed HgS NPs to below the method detection level (<2 ppb) for up to 12.5 h of operation. Flux reductions that occurred during the experiment were reversible by washing with water, suggesting negligible permanent fouling. Dissolved Hg2+ species were removed to non-detection levels by passing the UF-treated wastewater through a CysM thiol membrane. The adsorption efficiency in this long-term study (>20 h) was approximately 97%. Addition of Ca2+ cations reduced the adsorption efficiencies to 82% for the CysM membrane and to 40% for the Cys membrane. The inferior performance of Cys membranes may be explained by the presence of a carboxyl (-COOH) functional group in Cys, which may interfere in the adsorption process in the presence of multiple cations because of multication absorption. CysM membranes may therefore be more effective for treatment of wastewater than Cys membranes. Focused ion beam characterization of a CysM membrane cross section demonstrates that the adsorption of heavy metals is not limited to the membrane surface but takes place across the entire pore length. Experimental results for adsorptions of selected heavy metals on thiol membranes over a wide range of operating conditions could be predicted with modeling. These results show promising potential industrial applications of thiol-functionalized membranes.
Collapse
Affiliation(s)
- Mohammad
Saiful Islam
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington Kentucky 40506, United States
| | - Ronald J. Vogler
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington Kentucky 40506, United States
| | | | - Sebastián Hernández
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington Kentucky 40506, United States
| | - Nga Malekzadeh
- Chevron
Energy Technology Company, Richmond, California 94802, United States
| | - Thomas P. Hoelen
- Chevron
Energy Technology Company, Richmond, California 94802, United States
| | - Evan S. Hatakeyama
- Chevron
Energy Technology Company, Richmond, California 94802, United States
| | - Dibakar Bhattacharyya
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington Kentucky 40506, United States
| |
Collapse
|
9
|
Hernández S, Islam MS, Thompson S, Kearschner M, Hatakeyama E, Malekzadeh N, Hoelen T, Bhattacharyya D. Thiol-Functionalized Membranes for Mercury Capture from Water. Ind Eng Chem Res 2020; 59:5287-5295. [PMID: 33208988 DOI: 10.1021/acs.iecr.9b03761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pore functionalized membranes with appropriate ion exchange/chelate groups allow toxic metal sorption under convective flow conditions. This study explores the sorption capacity of ionic mercury in a polyvinylidene fluoride-poly(acrylic acid) (PVDFs-PAA) functionalized membrane immobilized with cysteamine (MEA). Two methods of MEA immobilization to the PVDF-PAA membrane have been assessed: (i) ion exchange (IE) and (ii) carbodiimide cross-linker chemistry using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), known as EDC/NHS coupling. The ion exchange method demonstrates that cysteamine (MEA) can be immobilized effectively on PVDF-PAA membranes without covalent attachment. The effectiveness of the MEA immobilized membranes to remove ionic mercury from the water was evaluated by passing a dissolved mercury(II) nitrate solution through the membranes. The sorption capacity of mercury for MEA immobilized membrane prepared by the IE method is 1015 mg/g PAA. On the other hand, the sorption capacity of mercury for MEA immobilized membrane prepared by EDC/NHS chemistry is 2446 mg/g PAA, indicating that membrane functionalization by EDC/NHS coupling enhanced mercury sorption 2.4 times compared to the IE method. The efficiencies of Hg removal are 94.1 ± 1.1 and 99.1 ± 0.1% for the MEA immobilized membranes prepared by IE and EDC/NHS coupling methods, respectively. These results show potential applications of MEA immobilized PVDF-PAA membranes for industrial wastewater treatment specifically from energy and mining industries to remove mercury and other toxic metals.
Collapse
Affiliation(s)
- Sebastián Hernández
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Md Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Samuel Thompson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Madison Kearschner
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Evan Hatakeyama
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Nga Malekzadeh
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Thomas Hoelen
- Chevron Energy Technology Company, Richmond, California 94801, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
10
|
Ma CB, Zhang Y, Liu Q, Du Y, Wang E. Enhanced Stability of Enzyme Immobilized in Rationally Designed Amphiphilic Aerogel and Its Application for Sensitive Glucose Detection. Anal Chem 2020; 92:5319-5328. [DOI: 10.1021/acs.analchem.9b05858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chong-Bo Ma
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Institute of Functional Materials Chemistry, and Department of Chemistry, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Li X, Zheng Y. Biotransformation of lignin: Mechanisms, applications and future work. Biotechnol Prog 2019; 36:e2922. [PMID: 31587530 DOI: 10.1002/btpr.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
As one of the most abundant polymers in biosphere, lignin has attracted extensive attention as a kind of promising feedstock for biofuel and bio-based products. However, the utilization of lignin presents various challenges in that its complex composition and structure and high resistance to degradation. Lignin conversion through biological platform harnesses the catalytic power of microorganisms to decompose complex lignin molecules and obtain value-added products through biosynthesis. Given the heterogeneity of lignin, various microbial metabolic pathways are involved in lignin bioconversion processes, which has been characterized in extensive research work. With different types of lignin substrates (e.g., model compounds, technical lignin, and lignocellulosic biomass), several bacterial and fungal species have been proved to own lignin-degrading abilities and accumulate microbial products (e.g., lipid and polyhydroxyalkanoates), while the lignin conversion efficiencies are still relatively low. Genetic and metabolic strategies have been developed to enhance lignin biodegradation by reprogramming microbial metabolism, and diverse products, such as vanillin and dicarboxylic acids were also produced from lignin. This article aims at presenting a comprehensive review on lignin bioconversion including lignin degradation mechanisms, metabolic pathways, and applications for the production of value-added bioproducts. Advanced techniques on genetic and metabolic engineering are also covered in the recent development of biological platforms for lignin utilization. To conclude this article, the existing challenges for efficient lignin bioprocessing are analyzed and possible directions for future work are proposed.
Collapse
Affiliation(s)
- Xiang Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas
| |
Collapse
|
12
|
Li N, Xia Q, Li Y, Hou X, Niu M, Ping Q, Xiao H. Immobilizing Laccase on Modified Cellulose/CF Beads to Degrade Chlorinated Biphenyl in Wastewater. Polymers (Basel) 2018; 10:E798. [PMID: 30960723 PMCID: PMC6403812 DOI: 10.3390/polym10070798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 12/03/2022] Open
Abstract
Novel modified cellulose/cellulose fibril (CF) beads (MCCBs) loaded with laccase were prepared to degrade polychlorinated biphenyls (PCBs) in wastewater. The proper porous structure in MCCBs was achieved by introducing nano CaCO₃ (as a pore forming agent) in cellulose/CF (CCBs) beads during the preparation process. Cellulose/CF composite beads were modified by maleic anhydride to introduce carboxyl groups. Laccase was immobilized on the MCCBs through electrostatic adsorption and covalent bonding. The effects of pH, laccase concentration and contact time on immobilization yields and recovered activity were investigated. The best conditions were pH 4, concentration 16 g/L and contact time 3 h. The immobilized laccase under these conditions showed a good performance in thermal and operational stability. The laccase immobilized on MCCB beads can remove 85% of 20 mg/L 4-hydroxy-3,5-dichlorobiphenyl (HO-DiCB) in wastewater. The results demonstrated that MCCBs, as a new type of green-based support, are very promising in material immobilizing laccase. This technology may be of potential advantage for the removal of polychlorinated biphenyls in wastewater from an environmental point of view.
Collapse
Affiliation(s)
- Na Li
- Liaoning Province Key Laboratory of Plup and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353, China.
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Quiyang Xia
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Yuan Li
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Xiaobang Hou
- Department of Environment Science & Engineering, North China Electric Power University, Baoding 071003, China.
| | - Meihong Niu
- Liaoning Province Key Laboratory of Plup and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qingwei Ping
- Liaoning Province Key Laboratory of Plup and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
13
|
Liu Z, Xu D, Xu L, Kong F, Wang S, Yang G. Preparation and Characterization of Softwood Kraft Lignin Copolymers as a Paper Strength Additive. Polymers (Basel) 2018; 10:E743. [PMID: 30960668 PMCID: PMC6403858 DOI: 10.3390/polym10070743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022] Open
Abstract
Softwood kraft lignin is a renewable type of woody material that can be converted to value-added products, for example, as a paper strength additive in the paper industry. In this study, the monomers of methacryloxyethyltrimethyl ammonium chloride (DMC), acrylic acid (AA), and acrylamide (AM) were grafted on softwood kraft lignin (SKL) to prepare three different SKL copolymers. Fourier-transform infrared, proton nuclear magnetic resonance, charge density, elemental, and molecular weight analyses confirmed that the monomers were successfully grafted onto SKL. The grafting rates of SKL-DMC, SKL-AA, and SKL-AM copolymers were 80.35%, 82.70%, and 79.48%, respectively. The application of SKL copolymers as a paper additive for enhancing paper physical properties was studied. The results indicated that at a 2 wt % dosage of SKL copolymers, the increase in the physical properties of paper is maximum.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Dingding Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lei Xu
- Xuancheng Product Quality Supervision and Inspection Institute, Xuancheng 242000, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|