1
|
You B, Huang CF, Lu JY. Terahertz Humidity Sensing Based on Surface-Modified Polymer Mesh Membranes with Photografting PEGMA Brush. Polymers (Basel) 2023; 15:3302. [PMID: 37571196 PMCID: PMC10422572 DOI: 10.3390/polym15153302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
A simple and compact intensity-interrogated terahertz (THz) relative humidity (RH) sensing platform is successfully demonstrated in experiments on the basis of combining a porous polymer sensing membrane and a continuous THz electronic system. The RH-sensing membrane is fabricated by surface modification of a porous polymer substrate with hydrophilic and photosensitive copolymer brushes via a UV-induced graft-polymerization process. The intensity interrogation sensing scheme indicated that the power reduction of the 0.4 THz wave is dependent on the grafting density of the copolymer brushes and proportional to the RH percent levels in the humidity-controlled air-sealed chamber. This finding was verified by the water contact angle measurement. Based on the slope of the proportional relation, the best sensitivity of the hydrophilic surface-modified sensing membrane was demonstrated at 0.0423 mV/% RH at the copolymer brush density of 1.57 mg/mm3 grafted on the single side of the sensing membrane. The sensitivity corresponds to a detection limit of approximately 1% RH. The THz RH sensing membrane was proven to exhibit the advantages of low loss, low cost, flexibility, high sensitivity, high RH resolution, and a wide RH working range of 25-99%. Thus, it is a good candidate for novel applications of wearable electronics, water- or moisture-related industrial and bio-sensing.
Collapse
Affiliation(s)
- Borwen You
- Department of Physics, National Changhua University of Education, No. 1 Jinde Road, Changhua 500207, Taiwan;
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Ja-Yu Lu
- Department of Photonics, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
| |
Collapse
|
2
|
Zhou T, Wu L, Ma N, Tang F, Chen J, Jiang Z, Li Y, Ma T, Yang N, Zong Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer. Bioeng Transl Med 2023; 8:e10368. [PMID: 36684111 PMCID: PMC9842049 DOI: 10.1002/btm2.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lili Wu
- Department of Medical UltrasonicsThird Affiliated Hospital of Sun Yat‐sen University, Guangdong Key Laboratory of Liver Disease ResearchGuangzhouGuangdongChina
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jialin Chen
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Na Yang
- Department of Clinical LaboratoryGuangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Zhen Zong
- Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Wei Z, Chen D, Zhang X, Wang L, Yang W. Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
4
|
Zhang F, Xie H, Guo B, Zhu C, Xu J. AIE-active macromolecules: designs, performances, and applications. Polym Chem 2022. [DOI: 10.1039/d1py01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aggregation-induced emission (AIE) macromolecules as emerging luminescent materials gained increasing attention owing to their good processability, high brightness, wide functionality, and smart responsiveness, with great potential in many fields.
Collapse
Affiliation(s)
- Fei Zhang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technolog, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
5
|
Fang L, Huang C, Shabir G, Liang J, Liu Z, Zhang H. Hyperbranching-Enhanced-Emission Effect Discovered in Hyperbranched Poly(4-(cyanomethyl)phenyl methacrylate). ACS Macro Lett 2019; 8:1605-1610. [PMID: 35619399 DOI: 10.1021/acsmacrolett.9b00864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To disclose the effect of architecture over fluorescence behaviors of polymers, linear and hyperbranched poly(4-(cyanomethyl)phenyl methacrylate)s (PCPMAs) were synthesized by using atom transfer radical polymerization (ATRP). Compared to linear PCPMAs with weakly AIE (AIE: aggregation-induced-emission) characteristics and small-molecule analogues of 4-(cyanomethyl)phenyl isobutyrate (CPB) with ACQ (ACQ: aggregation-caused-quenching) behaviors, hyperbranched PCPMA showed dramatically stronger fluorescence at both solution and solid states and more significant AIE characteristics, which were further enhanced by increasing the branching degree, indicating a significant hyperbranching-enhanced-emission effect (HEE). The HEE effect was attributed to the strong promotion of hyperbranched architecture over the formation of a nitrile group cluster with through-space conjugation (TSC). The HEE effect provided a promising methodology to construct efficient nontraditional fluorescent polymers without large-conjugated, rigid, and planar emitter groups.
Collapse
Affiliation(s)
- Laiping Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Science, Shantou University, Shantou 515063, China
| | - Chushu Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Science, Shantou University, Shantou 515063, China
| | - Ghulam Shabir
- Department of Biochemistry and Molecular Biology, Comprehensive Building, Shantou University Medical College, Xinling Road 22, Shantou 515041, P. R. China
| | - Jinlun Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Science, Shantou University, Shantou 515063, China
| | - Zhaoyang Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Science, Shantou University, Shantou 515063, China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Science, Shantou University, Shantou 515063, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Shantou 515063, P. R. China
| |
Collapse
|