1
|
Salfate G, Negrete-Vergara C, Azócar L, Xiao LP, Sun RC, Sánchez J. Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media. Int J Biol Macromol 2024; 278:134697. [PMID: 39147352 DOI: 10.1016/j.ijbiomac.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Collapse
Affiliation(s)
- Gabriel Salfate
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Camila Negrete-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Laura Azócar
- Universidad Católica de la Santísima Concepción/Facultad de Ciencias, Departamento de Química Ambiental, Chile
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Alhaj Hamoud Y, Shaghaleh H, Zhang K, Okla MK, Alaraidh IA, AbdElgawad H, Sheteiwy MS. Calcium lignosulfonate-induced modification of soil chemical properties improves physiological traits and grain quality of maize ( Zea mays) under salinity stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1397552. [PMID: 39246811 PMCID: PMC11377938 DOI: 10.3389/fpls.2024.1397552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024]
Abstract
Introduction Salinity negatively affects maize productivity. However, calcium lignosulfonate (CLS) could improve soil properties and maize productivity. Methods In this study, we evaluated the effects of CLS application on soil chemical properties, plant physiology and grain quality of maize under salinity stress. Thus, this experiment was conducted using three CLS application rates, CLS0, CLS5, and CLS10, corresponding to 0%, 5%, and 10% of soil mass, for three irrigation water salinity (WS) levels WS0.5, WS2.5, and WS5.5 corresponding to 0.5 and 2.5 and 5.5 dS/m, respectively. Results and discussion Results show that the WS0.5 × CLS10 combination increased potassium (K 0.167 g/kg), and calcium (Ca, 0.39 g/kg) values while reducing the sodium (Na, 0.23 g/kg) content in soil. However, the treatment WS5.5 × CLS0 decreased K (0.120 g/kg), and Ca (0.15 g/kg) values while increasing Na (0.75 g/kg) content in soil. The root activity was larger in WS0.5 × CLS10 than in WS5.5 × CLS0, as the former combination enlarged K and Ca contents in the root while the latter decreased their values. The leaf glutamine synthetase (953.9 µmol/(g.h)) and nitrate reductase (40.39 µg/(g.h)) were higher in WS0.5 × CLS10 than in WS5.5 × CLS0 at 573.4 µmol/(g.h) and 20.76 µg/(g.h), leading to the improvement in cell progression cycle, as revealed by lower malonaldehyde level (6.57 µmol/g). The K and Ca contents in the leaf (881, 278 mg/plant), stem (1314, 731 mg/plant), and grains (1330, 1117 mg/plant) were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 at (146, 21 mg/plant), (201, 159 mg/plant) and (206, 157 mg/plant), respectively. Therefore, the maize was more resistance to salt stress under the CLS10 level, as a 7.34% decline in yield was noticed when salinity surpassed the threshold value (5.96 dS/m). The protein (13.6 %) and starch (89.2 %) contents were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 (6.1 %) and (67.0 %), respectively. This study reveals that CLS addition can alleviate the adverse impacts of salinity on soil quality and maize productivity. Thus, CLS application could be used as an effective soil amendment when irrigating with saline water for sustainable maize production.
Collapse
Affiliation(s)
- Yousef Alhaj Hamoud
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Hiba Shaghaleh
- The Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Ke Zhang
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, China
- China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, China
- Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, China
- Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, China
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni Suef University, Beni-Suef, Egypt
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Djahaniani H, Ghavidel N, Kazemian H. Green and facile synthesis of lignin/HKUST-1 as a novel hybrid biopolymer metal-organic-framework for a pH-controlled drug release system. Int J Biol Macromol 2023; 242:124627. [PMID: 37119882 DOI: 10.1016/j.ijbiomac.2023.124627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
This manuscript describes the synthesis and characterization of a hybrid polymer/HKUST-1 composite for oral drug delivery. A green, one-pot approach was employed to synthesize the modified metal-organic frameworks (MOFs) composite using alkali lignin as a novel pH-responsive biopolymer carrier for the simulated oral delivery system. Several analytical techniques, including Fourier transform infrared (FTIR), X-ray powder diffraction (XRPD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to analyze the chemical and crystalline structure of HKUST-1 and L/HKUST-1 composite. The drug loading capacity and drug-controlled release behavior of HKUST-1 and L/HKUST-1 were examined using ibuprofen (IBU) as an oral drug model. L/HKUST-1 composite demonstrated a pH-controlled drug release behavior by advancing the drug stability at low pHs such as the gastric medium and controlling drug release in the pH range of 6.8-7.4, similar to intestinal pH. The results suggest that the L/HKUST-1 composite is a promising candidate for oral medication delivery.
Collapse
Affiliation(s)
- Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Nasim Ghavidel
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
4
|
Hua Q, Liu LY, Cho M, Karaaslan MA, Zhang H, Kim CS, Renneckar S. Functional Lignin Building Blocks: Reactive Vinyl Esters with Acrylic Acid. Biomacromolecules 2023; 24:592-603. [PMID: 36705942 DOI: 10.1021/acs.biomac.2c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introducing vinyl groups onto the backbone of technical lignin provides an opportunity to create highly reactive renewable polymers suitable for radical polymerization. In this work, the chemical modification of softwood kraft lignin was pursued with etherification, followed by direct esterification with acrylic acid (AA). In the first step, phenolic hydroxyl and carboxylic acid groups were derivatized into aliphatic hydroxyl groups using ethylene carbonate and an alkaline catalyst. The lignin was subsequently fractionated using a downward precipitation method to recover lignin of defined molar mass and solubility. After recovery, the resulting material was then esterified with AA, resulting in lignin with vinyl functional groups. The first step resulted in approximately 90% of phenolic hydroxyl groups being converted into aliphatic hydroxyls, while the downward fractionation resulted in three samples of lignin with defined molar masses. For the esterification reaction, the weight ratio of reagents, reaction temperature, and reaction time were evaluated as factors that would influence the modification efficacy. 13C NMR spectroscopy analysis of lignin samples before and after esterification showed that the optimized reaction conditions could reach approximately 40% substitution of aliphatic hydroxyl groups. Both steps only used lignin and the modifying reagent (no solvent), with the possibility of recovery and reuse of the reagent by dilution and distillation. An additional second esterification step of the resulting lignin sample with acetic acid or propionic acid converted 90% of remaining hydroxyl groups into short-chain carbon aliphatic esters, making a hydrophobic material suitable for further copolymerization with synthetic hydrophobic monomers.
Collapse
Affiliation(s)
- Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Li-Yang Liu
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mijung Cho
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Muzaffer A Karaaslan
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
5
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
6
|
Ghavidel N, Fatehi P. Pickering/Non-Pickering Emulsions of Nanostructured Sulfonated Lignin Derivatives. CHEMSUSCHEM 2020; 13:4567-4578. [PMID: 32419354 DOI: 10.1002/cssc.202000965] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Sulfoethylated lignin (SEKL) polymeric surfactant and sulfoethylated lignin nanoparticles (N-SEKL) with a size of 750±50 nm are produced by using a facile green process involving a solvent-free reaction and acidification-based fractionation. SEKL forms a liquid-like conventional emulsion with low viscosity that has temporary stability (5 h) at pH 7. However, N-SEKL forms a gel-like, motionless, and ultra-stable Pickering emulsion through a network of interactions between N-SEKL particles, which creates steric hindrance among the oil droplets at pH 3. The deposition of SEKL and N-SEKL on the oil surface is monitored by a using a quartz crystal microbalance. Experimentally, the formation of emulsions at pH 7 is found to be reversible owing to the low adsorption energy ΔE of SEKL on the oil droplet (ΔE≈15 kB T), which is determined with the help of three-phase contact-angle measurements. However, the high desorption energy (ΔE≈6.0×105 kB T) of N-SEKL makes it irreversibly adsorb on the oil droplets. SEKL is too hydrophilic to attach to the oil interface (ΔE≈0) and thus does not facilitate emulsion formation at pH 11. Therefore, it is feasible to apply SEKL for the formulation of Pickering or non-Pickering emulsions in the form of nanoparticles or polymeric surfactants, depending on the targeted application.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
7
|
Liu S, van Muyden AP, Bai L, Cui X, Fei Z, Li X, Hu X, Dyson PJ. Metal-Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis. CHEMSUSCHEM 2019; 12:3271-3277. [PMID: 31038822 DOI: 10.1002/cssc.201900677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Catalytic lignosulfonate valorization is hampered by the in situ liberation of sulfur that ultimately poisons the catalyst. To overcome this limitation, metal sulfide catalysts were developed that are able to cleave the C-O bonds of lignosulfonate and are resistant to sulfur poisoning. The catalysts were prepared by using the lignosulfonate substrate as a precursor to form well-dispersed carbon-supported metal (Co, Ni, Mo, CoMo, NiMo) sulfide catalysts. Following optimization of the reaction conditions employing a model substrate, the catalysts were used to generate guaiacyl monomers from lignosulfonate. The Co catalyst was able to produce 23.7 mg of 4-propylguaiacol per gram of lignosulfonate with a selectivity of 84 %. The catalysts operated in water and could be recycled and reused multiple times. Thus, it was demonstrated that an inexpensive, sulfur-tolerant catalyst based on an earth-abundant metal and lignosulfonate efficiently catalyzed the selective hydrogenolysis of lignosulfonate in water in the absence of additives.
Collapse
Affiliation(s)
- Sijie Liu
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Antoine P van Muyden
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lichen Bai
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xinjiang Cui
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xuehui Li
- Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P.R. China
| | - Xile Hu
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
López Serna D, Elizondo Martínez P, Reyes González MÁ, Zaldívar Cadena AA, Zaragoza Contreras EA, Sánchez Anguiano MG. Synthesis and Characterization of a Lignin-Styrene-Butyl Acrylate Based Composite. Polymers (Basel) 2019; 11:E1080. [PMID: 31242593 PMCID: PMC6631112 DOI: 10.3390/polym11061080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
In recent years, the pursuit of new polymer materials based on renewable raw materials has been intensified with the aim of reusing waste materials in sustainable processes. The synthesis of a lignin, styrene, and butyl acrylate based composite was carried out by a mass polymerization process. A series of four composites were prepared by varying the amount of lignin in 5, 10, 15, and 20 wt.% keeping the content of butyl acrylate constant (14 wt.%). FTIR and SEM revealed that the -OH functional groups of lignin reacted with styrene, which was observed by the incorporation of lignin in the copolymer. Additionally, DSC analysis showed that the increment in lignin loading in the composite had a positive influence on thermal stability. Likewise, Shore D hardness assays exhibited an increase from 25 to 69 when 5 and 20 wt.% lignin was used respectively. In this same sense, the contact angle (water) measurement showed that the LEBA15 and LEBA20 composites presented hydrophobic properties (whit contact angle above 90°) despite having the highest amount of lignin, demonstrating that the interaction of the polymer chains with the -OH groups of lignin was the main mechanism in the composites interaction.
Collapse
Affiliation(s)
- Daniel López Serna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L, México.
| | - Perla Elizondo Martínez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L, México.
| | - Miguel Ángel Reyes González
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L, México.
| | - Antonio Alberto Zaldívar Cadena
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Av. Universidad S/N, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L, México.
| | - Erasto Armando Zaragoza Contreras
- Centro de Investigación en Materiales Avanzados, S.C. Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, 31136, Chihuahua, Chih. México.
| | - María Guadalupe Sánchez Anguiano
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, 66455 San Nicolás de los Garza, N.L, México.
| |
Collapse
|
9
|
Ghavidel N, Fatehi P. Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Adv 2019; 9:17639-17652. [PMID: 35520539 PMCID: PMC9064571 DOI: 10.1039/c9ra02526j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical polymerization in a facile aqueous emulsion process. KL enhanced surface area and porosity of PS. The physicochemical properties of induced KL–PS were analyzed, and the fate of lignin in KL–PS was discussed fundamentally. Wettability and surface energy analyses were implemented to monitor the surface properties of KL, PS and KL–PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led to KL–PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance of copper ion on KL–PS than on PS and KL. The sorption mechanism, which was revealed by FTIR studies, was primarily attributed to the coordination of Cu(ii) and hydroxyl group of KL–PS as well as the quadrupolar system of KL–PS. Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products.![]()
Collapse
Affiliation(s)
- Nasim Ghavidel
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| |
Collapse
|