1
|
Schmidt RDCDR, Oliveira TED, Deon M. Polymeric nanocomposites in a biological interface: From a molecular view to final applications. Colloids Surf B Biointerfaces 2025; 251:114605. [PMID: 40073629 DOI: 10.1016/j.colsurfb.2025.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Polymeric nanocomposites have been valuable materials for the pharmaceutical and biomedical fields because they associate the unique properties of a material on a nanoscale with a polymeric matrix, with a synergistic outcome that improves their physical, chemical, and mechanical properties. Understanding the nature of the physical and chemical interactions and effects that take place at the polymer-nanomaterial interface is crucial to predict and explain how the nanocomposite behaves when set forth a health-related application and faces a biological interface. Therefore, this review aimed to assemble and examine experimental articles in which the molecular-level interaction between nanomaterials and polymer matrices were determinants of the biological outcome. For health applications, the nanocomposite systems were found to be most applied as antimicrobials, for tissue engineering, and for drug delivery. A plethora of biocompatible polymers have been reported, although for nanomaterials the most distinguished effects were attained with metal and metal oxide nanoparticles. The bioactivity of the nanocomposite was found to be dependent on features such as: colloidal size, release, and disintegration of the nanoparticle, controlled by the polymer matrix; hydrophilicity, degree of crosslinking, porosity, mechanical strength, and stability/responsiveness of the polymer, modified by the nanofiller; and the final charge and functional groups available at the whole nanocomposite surface. As a result, researchers can gather insights to design and characterize advanced polymeric nanocomposites with optimized performance for use in biomedical devices, drug delivery systems, and other therapeutic applications.
Collapse
Affiliation(s)
- Rita de Cássia Dos Reis Schmidt
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Espinosa de Oliveira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Monique Deon
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| |
Collapse
|
2
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
3
|
Ahmed EM, Feteha A, Kamal RS, Behalo MS, Abdel-Raouf ME. Preparation and potential of chitosan-based/Al 2O 3 green hydrogel composites for the removal of methyl red dye from simulated solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49626-49645. [PMID: 39080170 DOI: 10.1007/s11356-024-34347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Different dyes are discharged into water streams, causing significant pollution to the entire ecosystem. The present work deals with the removal of acid red 2 dye (methyl red-as an anionic dye) by green sorbents based on chitosan derivatization. In this regard, two classes of chitosan derivatives-a total of six-were prepared by gamma irradiation at 30 kGy. The first group (group A) constitutes a crosslinked chitosan/polyacrylamide/aluminum oxide with different feed ratios, while the second group, identified as group B, is composed of crosslinked carboxymethyl chitosan/polyacrylamide/aluminum oxide with different ratios. Glycerol was added to soften the resultant hydrogels. The products were characterized by different tools, including FTIR for confirming the chemical modification, TGA for investigating their thermal properties, and XRD for verifying their crystalline structure. The morphology of the prepared derivatives was studied through SEM, while their topography before and after dye adsorption was monitored via the AFM. The removal efficiencies of the prepared sorbents were verified at different operation conditions, such as pH, temperature, adsorbent dose, initial concentration of dye solutions, and contact time. The data revealed that the optimum conditions for maximum dye uptake were as follows: pH 4, contact time 120 min, 0.1-g sorbent dose, and 50-ppm dye concentration. Additionally, the prepared sorbents demonstrated potent adsorption capacity and removal efficiency. It was found that the elements of the second group displayed higher performance than their counterparts. The data showed also that the adsorption process best fits with the Freundlich model and obeyed pseudo-first-order kinetic isotherm. In addition, the synthesized composites showed observable antibacterial potency toward E. coli as a Gram-negative bacterium and S. aureus as a Gram-positive bacterium.
Collapse
Affiliation(s)
- Ebtehal Mosaad Ahmed
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Amr Feteha
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Rasha S Kamal
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Mohamed S Behalo
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt.
| | - Manar E Abdel-Raouf
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
4
|
Verčimáková K, Karbowniczek J, Sedlář M, Stachewicz U, Vojtová L. The role of glycerol in manufacturing freeze-dried chitosan and cellulose foams for mechanically stable scaffolds in skin tissue engineering. Int J Biol Macromol 2024; 275:133602. [PMID: 38964681 DOI: 10.1016/j.ijbiomac.2024.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Various strategies have extensively explored enhancing the physical and biological properties of chitosan and cellulose scaffolds for skin tissue engineering. This study presents a straightforward method involving the addition of glycerol into highly porous structures of two polysaccharide complexes: chitosan/carboxymethyl cellulose (Chit/CMC) and chitosan/oxidized cellulose (Chit/OC); during a one-step freeze-drying process. Adding glycerol, especially to Chit/CMC, significantly increased stability, prevented degradation, and improved mechanical strength by nearly 50%. Importantly, after 21 days of incubation in enzymatic medium Chit/CMC scaffold has almost completely decomposed, while foams reinforced with glycerol exhibited only 40% mass loss. It is possible due to differences in multivalent cations and polymer chain contraction, resulting in varied hydrogen bonding and, consequently, distinct physicochemical outcomes. Additionally, the scaffolds with glycerol improved the cellular activities resulting in over 40% higher proliferation of fibroblast after 21 days of incubation. It was achieved by imparting water resistance to the highly absorbent material and aiding in achieving a balance between hydrophilic and hydrophobic properties. This study clearly indicates the possible elimination of additional crosslinkers and multiple fabrication steps that can reduce the cost of scaffold production for skin tissue engineering applications while tailoring mechanical strength and degradation.
Collapse
Affiliation(s)
- Katarína Verčimáková
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Joanna Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Marian Sedlář
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Lucy Vojtová
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Majood M, Agrawal O, Garg P, Selvam A, Yadav SK, Singh S, Kalyansundaram D, Verma YK, Nayak R, Mohanty S, Mukherjee M. Carbon quantum dot-nanocomposite hydrogel as Denovo Nexus in rapid chondrogenesis. BIOMATERIALS ADVANCES 2024; 157:213730. [PMID: 38101066 DOI: 10.1016/j.bioadv.2023.213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The incapability of cartilage to naturally regenerate and repair chronic muscular injuries urges the development of competent bionic rostrums. There is a need to explore faster strategies for chondrogenic engineering using mesenchymal stem cells (MSCs). Along these lines, rapid chondrocyte differentiation would benefit the transplantation demand affecting osteoarthritis (OA) and rheumatoid arthritis (RA) patients. In this report, a de novo nanocomposite was constructed by integrating biogenic carbon quantum dot (CQD) filler into synthetic hydrogel prepared from dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid (AAc). The dominant structural integrity of synthetic hydrogel along with the chondrogenic differentiation potential of garlic peel derived CQDs led to faster chondrogenesis within 14 days. By means of extensive chemical and morphological characterization techniques, we illustrate that the hydrogel nanocomposite possesses lucrative features to influence rapid chondrogenesis. These results were further corroborated by bright field imaging, Alcian blue staining and Masson trichome staining. Thus, this stratagem of chondrogenic engineering conceptualizes to be a paragon in clinical wound care for the rapid manufacturing of chondrocytes.
Collapse
Affiliation(s)
- Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Omnarayan Agrawal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Piyush Garg
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India
| | - Abhyavartin Selvam
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India; Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sunil Kumar Yadav
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Sonu Singh
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Dinesh Kalyansundaram
- Center of Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Yogesh Kumar Verma
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences, Delhi 110054, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT center of Excellence, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
6
|
Reynolds M, Stoy LM, Sun J, Opoku Amponsah PE, Li L, Soto M, Song S. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels 2024; 10:115. [PMID: 38391444 PMCID: PMC10888113 DOI: 10.3390/gels10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the electrical and mechanical properties of PEDOT:PSS, providing a more promising interface with biological tissues. Here we study the effects of incorporating crosslinking additives, such as glycerol and sodium trimetaphosphate (STMP), in developing interpenetrating PEDOT:PSS-based conductive hydrogels. The addition of glycerol at a low concentration maintained the PEDOT:PSS conductivity with enhanced wettability but decreased the mechanical stiffness. Increasing the concentration of STMP allowed sufficient physical crosslinking with PEDOT:PSS, resulting in improved hydrogel conductivity, wettability, and rheological properties without glycerol. The STMP-based PEDOT:PSS conductive hydrogels also exhibited shear-thinning behaviors, which are potentially favorable for extrusion-based 3D bioprinting applications. We demonstrate an interpenetrating conducting polymer hydrogel with tunable electrical and mechanical properties for cellular interactions and future tissue engineering applications.
Collapse
Affiliation(s)
- Madelyn Reynolds
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Lindsay M Stoy
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Jindi Sun
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | | | - Lin Li
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Misael Soto
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
| | - Shang Song
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85719, USA
- Departments of Materials Science and Engineering, Neuroscience GIDP, and BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
7
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
8
|
Zhang Y, Liu H, Wang P, Yu Y, Zhou M, Xu B, Cui L, Wang Q. Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Strong, Tough, and Adhesive Polyampholyte/Natural Fiber Composite Hydrogels. Polymers (Basel) 2022; 14:polym14224984. [PMID: 36433111 PMCID: PMC9699137 DOI: 10.3390/polym14224984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hydrogels with high mechanical strength, good crack resistance, and good adhesion are highly desirable in various areas, such as soft electronics and wound dressing. Yet, these properties are usually mutually exclusive, so achieving such hydrogels is difficult. Herein, we fabricate a series of strong, tough, and adhesive composite hydrogels from polyampholyte (PA) gel reinforced by nonwoven cellulose-based fiber fabric (CF) via a simple composite strategy. In this strategy, CF could form a good interface with the relatively tough PA gel matrix, providing high load-bearing capability and good crack resistance for the composite gels. The relatively soft, sticky PA gel matrix could also provide a large effective contact area to achieve good adhesion. The effect of CF content on the mechanical and adhesion properties of composite gels is systematically studied. The optimized composite gel possesses 35.2 MPa of Young's modulus, 4.3 MPa of tensile strength, 8.1 kJ m-2 of tearing energy, 943 kPa of self-adhesive strength, and 1.4 kJ m-2 of self-adhesive energy, which is 22.1, 2.3, 1.8, 6.0, and 4.2 times those of the gel matrix, respectively. The samples could also form good adhesion to diverse substrates. This work opens a simple route for fabricating strong, tough, and adhesive hydrogels.
Collapse
|
10
|
Li T, Liu Q, Qi H, Zhai W. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204032. [PMID: 36180413 DOI: 10.1002/smll.202204032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Four-dimensional (4D) printing enables programmable, predictable, and precise shape change of responsive materials to achieve desirable behaviors beyond conventional three-dimensional (3D) printing. However, applying 4D printing to ceramics remains challenging due to their intrinsic brittleness and inadequate stimuli-responsive ability. Here, this work proposes a conceptional combination of bioinspired microstructure design and a programmable prestrain approach for 4D printing of nanoceramics. To overcome the flexibility limitation, the bioinspired concentric cylinder structure in the struts of 3D printed lattices are replicated to develop origami nanoceramic composites with high inorganic content (95 wt%). Furthermore, 4D printing is achieved by applying a programmed prestrain to the printed lattices, enabling the desired deformation when the prestrain is released. Due to the bioinspired concentric cylinder microstructures, the printed flexible nanoceramic composites exhibit superior mechanical performance and anisotropic thermal management capability. Further, by introducing oxygen vacancies to the ceramic nanosheets, conductive nanoceramic composites are prepared with a unique sensing capability for various sensing applications. Hence, this research breaks through the limitation of ceramics in 4D printing and achieves high-performance shape morphing materials for applications under extreme conditions, such as space exploration and high-temperature systems.
Collapse
Affiliation(s)
- Tian Li
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
11
|
Berdiaki A, Kuskov AN, Kulikov PP, Thrapsanioti LN, Giatagana EM, Stivaktakis P, Shtilman MI, Tsatsakis A, Nikitovic D. In Vitro Assessment of Poly-N-Vinylpyrrolidone/Acrylic Acid Nanoparticles Biocompatibility in a Microvascular Endothelium Model. Int J Mol Sci 2022; 23:12446. [PMID: 36293301 PMCID: PMC9604021 DOI: 10.3390/ijms232012446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2025] Open
Abstract
An amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid-namely, p(VP-AA)-OD6000 (p(VP-AA))-was synthesized to prepare p(VP-AA) nanoparticles (NPs). Furthermore, the copolymer was linked with CFSE, and the so-prepared nanoparticles were loaded with the DiI dye to form D nanoparticles (DNPs). In this study, as demonstrated by immunofluorescence microscopy, immunofluorescence, and confocal microscopy, DNPs were readily taken up by human microvascular endothelial cells (HMEC-1) cells in a concentration-dependent manner. Upon uptake, both the CFSE dye (green stain) and the DiI dye (red stain) were localized to the cytoplasm of treated cells. Treatment with p(VP-AA) did not affect the viability of normal and challenged with LPS, HMEC-1 cells at 0.010 mg/mL and induced a dose-dependent decrease of these cells' viability at the higher concentrations of 0.033 and 0.066 mg/mL (p ≤ 0.01; p ≤ 0.001, respectively). Furthermore, we focused on the potential immunological activation of HMEC-1 endothelial cells upon p(VP-AA) NPs treatment by assessing the expression of adhesion molecules (E-Selectin, ICAM-1, and V-CAM). NPs treatments at concentrations utilized (p = NS) did not affect individual adhesion molecules' expression. p(VP-AA) NPs do not activate the endothelium and do not affect its viability at pharmacologically relevant concentrations.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Andrey N. Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Pavel P. Kulikov
- Centre for Strategic Planning of FMBA of Russia, 119121 Moscow, Russia
| | - Lydia-Nefeli Thrapsanioti
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | - Mikhail I. Shtilman
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Miusskaya sqr. 9, 125047 Moscow, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021; 22:12267. [PMID: 34830145 PMCID: PMC8624171 DOI: 10.3390/ijms222212267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.
Collapse
Affiliation(s)
- Soher N. Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Paul R. Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Sarah A. Kuehne
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | | |
Collapse
|
13
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
14
|
Tsai TY, Shen KH, Chang CW, Jovanska L, Wang R, Yeh YC. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater Sci 2021; 9:985-999. [PMID: 33300914 DOI: 10.1039/d0bm01528h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) are recently introduced to address the limitations of traditional DN hydrogels, such as the lack of diversity in the network structure and the restricted functionalities. However, two challenges remain, including the time-consuming preparation and the lack of shear-thinning and self-healing properties. Here, our approach to developing versatile ncDN hydrogels is through the use of multiple interfacial crosslinking chemistries (i.e., noncovalent interactions of electrostatic interaction and hydrogen bonds as well as dynamic covalent interactions of imine bonds and boronate ester bonds) and surface functionalized nanomaterials (i.e. phenylboronic acid modified reduced graphene oxide (PBA-rGO)). PBA-rGO was used as a multivalent gelator to further crosslink the two polymer chains (i.e. triethylene glycol-grafted chitosan (TEG-CS) and polydextran aldehyde (PDA)) in DN hydrogels, forming the TEG-CS/PDA/PBA-rGO ncDN hydrogels in seconds. The microstructures (i.e. pore size) and properties (i.e. rheological, mechanical, and swelling properties) of the ncDN hydrogels can be simply modulated by changing the amount of PBA-rGO. The dynamic bonds in the polymeric network provided the shear-thinning and self-healing properties to the ncDN hydrogels, allowing the hydrogels to be injected and molded into varied shapes as well as self-repair the damaged structure. Besides, the designed TEG-CS/PDA/PBA-rGO ncDN hydrogels were cytocompatible and also exhibited antibacterial activity. Taken together, we hereby provide a nanomaterial approach to fabricate a new class of ncDN hydrogels with tailorable networks and favorite properties for specific applications.
Collapse
Affiliation(s)
- Tsan-Yu Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lavernchy Jovanska
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Huang J, Chi X, Du Y, Qiu Q, Liu Y. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4008-4016. [PMID: 33433993 DOI: 10.1021/acsami.0c20241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The side reaction and dendrite of a zinc anode in an aqueous electrolyte represent a huge obstacle for the development of rechargeable aqueous Zn batteries. An electrolyte with confined water is recognized to fundamentally stabilize the zinc anode. This work proposes acetamide/zinc perchlorate hexahydrate (AA/ZPH) ionic liquid (IL)-polyacrylamide (PAM) polymer electrolytes, here defined as IL-PAM. The novel Zn2+-conducting IL is able to accommodate trace water and can achieve both high conductivity (15.02 mS cm-1) and alleviation of side reactions (>90% reduction). Cross-linked PAM acts as the three-dimensional framework to suppress dendrites and obtain flexibility. As a result, the Zn anode with IL-PAM can cycle stably over 2000 h with a record highest cumulative capacity of 3000 mAh cm-2 and well-preserved morphology. Based on IL-PAM, the flexible LFP|Zn hybrid batteries can be successfully assembled and operate normally in series and parallel conditions. Moreover, the low volatility of IL and binding forces exerted by the PAM network endues IL-PAM with an anti-dehydration property. In a 50 °C unsealed environment, the weight loss of IL-PAM is about two-fifths of PAM hydrogel and an aqueous electrolyte, and the corresponding hybrid battery with IL-PAM can also prolong a 4 times longer lifespan.
Collapse
Affiliation(s)
- Jiaqi Huang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Chi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuexiu Du
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiliang Qiu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
16
|
Li C, Deng X, Zhou X. Synthesis Antifreezing and Antidehydration Organohydrogels: One-Step In-Situ Gelling versus Two-Step Solvent Displacement. Polymers (Basel) 2020; 12:E2670. [PMID: 33198210 PMCID: PMC7696091 DOI: 10.3390/polym12112670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Organohydrogels with distinct antifreezing and antidehydration properties have aroused great interest among researchers, and various organohydrogels and organohydrogel-based applications have emerged recently. There are two popular synthesis strategies to prepare these antifreezing and antidehydration organohydrogels: the in-situ gelling and the solvent displacement strategies. Although both strategies have been widely applied, there is a lack of comparative study of these two strategies. In this work, to elucidate the comparative advantages of the two synthesis strategies, we studied and compared the mechanical and environmental tolerant properties of the organohydrogels synthesized from both strategies. The glycerol-based and ethylene glycol-based chemical polyacrylamide (PAAm) organohydrogel and the glycerol-based physical gelatin organohydrogel were synthesized and studied. Through the comparative study, we have found that the organohydrogels from different strategies with the same dispersion medium showed similar antifreezing and antidehydration properties but different mechanical properties. The mechanical properties of these organohydrogels are influenced by two opposite factors for each strategy: the enhanced physical interactions induced strengthening and solvent effect or swelling induced weakening. We hope this study may provide a better understanding of the synthesis strategies of organohydrogels and provide a valuable guide to choose the suitable synthesis strategy for each application.
Collapse
Affiliation(s)
| | | | - Xiaohu Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (C.L.); (X.D.)
| |
Collapse
|
17
|
Seo Y, Kim BS, Ballance WC, Aw N, Sutton B, Kong H. Transparent and Flexible Electronics Assembled with Metallic Nanowire-Layered Nondrying Glycerogel. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13040-13050. [PMID: 32072806 DOI: 10.1021/acsami.9b21697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
There has been increasing demand for transparent and mechanically durable electrical conductors for their uses in wearable electronic devices. It is common to layer metallic nanowires on transparent but stiff poly(dimethylsiloxane) (PDMS) or stretchable but opaque Ecoflex-based substrates. Here, we hypothesized that layering metallic nanowires on a stretchable and hygroscopic gel would allow us to assemble a transparent, stretchable, and durable conductor. The hygroscopic property of the gel was attained by partially replacing water in the preformed polyacrylamide hydrogel with glycerol. The resulting gel, denoted as a glycerogel, could remain hydrated for over 6 months in air by taking up water molecules from the air. The glycerogel was tailored to be stretchable up to 8 times its original length by tuning the amount of the cross-linker and acrylamide. The resulting glycerogel allowed for deposition of wavy silver nanowires using the prestrain method up to 400% prestrain, without causing kinks and interfacial cracks often found with nanowires layered onto PDMS. With a prestrain of 100%, the resulting nanowire-gel conductor exhibited optical transparency (85%) and electrical conductivity (17.1 ohm/sq) even after 5000 cycles of deformation. The results of this study would broadly be useful to improve the performance of the next generation of flexible electronic devices.
Collapse
Affiliation(s)
- Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Byoung Soo Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Natalie Aw
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brad Sutton
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Abednejad A, Ghaee A, Morais ES, Sharma M, Neves BM, Freire MG, Nourmohammadi J, Mehrizi AA. Polyvinylidene fluoride-Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomater 2019; 100:142-157. [PMID: 31586728 DOI: 10.1016/j.actbio.2019.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
Abstract
To improve the efficacy of transdermal drug delivery systems, the physical and chemical properties of drugs need to be optimized to better penetrate into the stratum corneum and to better diffuse into the epidermis and dermis layers. Accordingly, dual-biological function ionic liquids composed of active pharmaceutical ingredients were synthesized, comprising both analgesic and anti-inflammatory properties, by combining a cation derived from lidocaine and anions derived from hydrophobic nonsteroidal anti-inflammatory drugs. Active pharmaceutical ingredient ionic liquids (API-ILs) were characterized through nuclear magnetic resonance, cytotoxicity assay, and water solubility assay. All properties were compared with those of the original drugs. By converting the analgesic and anti-inflammatory drugs into dual-function API-ILs, their water solubility increased up to 470-fold, without affecting their cytotoxic profile. These API-ILs were incorporated into a bilayer wound dressing composed of a hydrophobic polyvinylidene fluoride (PVDF) membrane to act as a drug reservoir and a biocompatible hyaluronic acid (HA) layer. The prepared bilayer wound dressing was characterized in terms of mechanical properties, membrane drug uptake and drug release behavior, and application in transdermal delivery, demonstrating to have desirable mechanical properties and improved release of API-ILs. The assessment of anti-inflammatory activity through the inhibition of LPS-induced production of nitric oxide and prostaglandin E2 by macrophages revealed that the prepared membranes containing API-ILs are as effective as those with the original drugs. Cell adhesion of fibroblasts on membrane surfaces and cell viability assay confirmed improved the viability and adhesion of fibroblasts on PVDF/HA membranes. Finally, wound healing assay performed with fibroblasts showed that the bilayer membranes containing dual-function API-ILs are not detrimental to wound healing, while displaying increased and controlled drug delivery and dual therapeutic behavior. STATEMENT OF SIGNIFICANCE: This work shows the preparation and characterization of bilayer wound dressings comprising dual-biological function active pharmaceutical ingredients based on ionic liquids with improved and controlled drug release and dual therapeutic efficiency. By converting analgesic and anti-inflammatory drugs into ionic liquids, their water solubility increases up to 470-fold. The prepared bilayer wound dressing membranes have desirable mechanical properties and improved release of drugs. The prepared membranes comprising ionic liquids display anti-inflammatory activity as effective as those with the original drugs. Cell adhesion of fibroblasts on membrane surfaces and cell viability assays show improved viability and adhesion of fibroblasts on PVDF/HA membranes, being thus of high relevance as effective transdermal drug delivery systems.
Collapse
|