1
|
Lo IL, Kao CY, Huang TH, Ho CT, Kao CT. The cytotoxicity assessment of different clear aligner materials. J Dent Sci 2024; 19:2065-2073. [PMID: 39347034 PMCID: PMC11437316 DOI: 10.1016/j.jds.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Invisible orthodontic treatments are becoming increasingly popular, and numerous brands of invisible aligners are now available. However, concerns remain about the safety of the materials used in these products. This study aimed to assess the cytotoxic effects of both original and thermoformed thermoplastic materials used in orthodontic aligners on human periodontal ligament (HPDL) cells in vitro. Materials and methods The experiment used six different brands, each containing three types of thermoplastic materials, Polyethylene terephthalateco-1, 4-cyclohexylenedimethylene terephthalate (PETG), thermoplastic polyurethane (TPU), and copolyester polyethylene terephthalate (PET). The original sheets and the thermoformed materials were soaked in a culture medium for seven and fourteen days, and then applied to cultured human periodontal ligament cells. Cells were harvested on the first, third, and fifth days after application, and their viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Results The findings revealed that some thermoformed materials, notably PETG, exhibited lower survival rates compared to their non-thermoformed versions. However, other materials such as TP and PET maintained over 70% cell viability, indicating only minor cytotoxic effects. Conclusion These findings highlight the need for further research into the long-term biocompatibility of these materials but generally affirm their safety for use in orthodontic aligners under the tested conditions.
Collapse
Affiliation(s)
- I-Lin Lo
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan-Yi Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsui-Hsein Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Te Ho
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Lao M, Wang Y, Li X, Li J, Ning X, Yin S, Deng X. Effect of Specific Surface Area and Hydrophobicity of Electrospun Nanofibers on the Sustained Release Performance of Diclofenac Sodium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018474 DOI: 10.1021/acs.langmuir.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nanofibers produced by electrospinning are suitable options for slow-release materials. Diclofenac sodium (DS) is a nonsteroidal anti-inflammatory medication with a brief half-life that can serve as an effective sustained-release agent. This paper presents a novel method for producing DS-sustained release nanofibers by electrostatic spinning processes. During the preparation, the slow-release capabilities of biodegradable materials poly(lactic acid) (PLA) and polycaprolactone (PCL) are investigated. A composite drug-carrying scaffold is prepared to enhance the sustained-release performance. The sustained release ability is affected by the specific surface area of the nanofibers and the hydrophobicity of the polymer. The findings indicate that the composite nanofiber with a PLA/PCL ratio of 1:1 demonstrates the most effective sustained-release performance. The release rate is mostly influenced by the hydrophobicity of the polymer at this point. Sustained-release kinetic simulations were performed and revealed that the release of nanofibers follows a first-order release paradigm. This work presents a straightforward approach for creating a sustained-release formulation of DS.
Collapse
Affiliation(s)
- Min Lao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yingjie Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Junlang Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Ning
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Shaofeng Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaoting Deng
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
3
|
Rozaini MT, Grekov DI, Bustam MA, Pré P. Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO 2/CH 4. Molecules 2024; 29:2069. [PMID: 38731559 PMCID: PMC11085341 DOI: 10.3390/molecules29092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HKUST-1 is an MOF adsorbent industrially produced in powder form and thus requires a post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST-1 is also sensitive to moisture, which degrades its crystalline structure. In this work, HKUST-1, in the form of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent HKUST-1/TPU extrudate was then compared to HKUST-1/PLA extrudates synthesized with more hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-separation performances of HKUST-1/TPU were investigated and compared with HKUST-1/PLA from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly, the moisture stability of the composite materials was investigated via an aging analysis during storage under humid conditions. It is shown that HKUST-1's crystalline structure was preserved in the HKUST-1/TPU extrudates. The composites also exhibited good thermal stability under 523 K, whilst their textural properties were not significantly modified compared with the pristine HKUST-1. Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to the pristine HKUST-1. After three months of storage under atmospheric humid conditions, CO2 adsorption capacities were reduced to only 10% for HKUST-1/TPU, whereas reductions of about 25% and 54% were observed for HKUST-1/PLA and the pristine HKUST-1, respectively. This study demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic binder to operate adsorbents with enhanced moisture stability in gas-separation columns.
Collapse
Affiliation(s)
- Muhamad Tahriri Rozaini
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Denys I. Grekov
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
| | - Pascaline Pré
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| |
Collapse
|
4
|
Kharfi F, Benkahila K, Boulkhessaim F, Betka A, Meziri A, Khelfa S, Ghediri N. Implementation of 3D Printing and Modeling Technologies for the Fabrication of Dose Boluses for External Radiotherapy at the CLCC of Sétif, Algeria. Technol Cancer Res Treat 2024; 23:15330338241266479. [PMID: 39043036 PMCID: PMC11271100 DOI: 10.1177/15330338241266479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: In external radiotherapy, dose boluses and compensators are used for treatment of irregular facial topography surfaces. In such cases, skewed isodose curves need to be addressed using a bolus that gives the deep dose distribution a shape adapted to the anatomical structures to be protected or irradiated. The combination of 3D modeling and printing technologies is a promising alternative to the conventional inaccurate and uncomfortable bolus fabrication technique. In this work, the proposed technologies will be used in the design and fabrication of high-performance and high-accuracy boluses that respond to the main constraints on metrology, adhesion to the patient's surface, comfort, and dose delivery. Methods: As a first phase in the implementation of the proposed solution, 3D printing materials, to be used in the fabrication of radiotherapy boluses, were selected and characterized to check how they respond to the required criteria on functionality, safety, and quality. Results: The obtained results show that among the studied materials, thermoplastic polyurethane (TPU) was found to be slightly more suitable than polylactic acid (PLA) for the fabrication of 3D printing boluses but for some kinds of treatments, PLA may be preferred despite its relative rigidity. Conclusion: In this work, procedures for dose bolus fabrication were proposed, and necessary data were obtained for some available 3D printing materials (TPU and PLA) that can be used for targeted applications. This achievement is a major step toward the final implementation of 3D modeling and printing technologies for the efficient fabrication of radiotherapy dose boluses.
Collapse
Affiliation(s)
- Faycal Kharfi
- Department of Physics, Faculty of Sciences, Setif1 University-Ferhat Abbas, Setif, Algeria
- Laboratory of Dosing, Analysis and Characterization with High Resolution, Setif1 University-Ferhat Abbas, Setif, Algeria
| | - Karim Benkahila
- Laboratory of Dosing, Analysis and Characterization with High Resolution, Setif1 University-Ferhat Abbas, Setif, Algeria
- Department of Radiotherapy, Fighting Against Cancer Medical Centre of Setif, Setif, Algeria
| | - Foued Boulkhessaim
- Department of Radiotherapy, Fighting Against Cancer Medical Centre of Setif, Setif, Algeria
- Department of Medicine, Faculty of Medicine, Setif1 University-Ferhat Abbas, Setif, Algeria
| | - Abderrahim Betka
- Department of Physics, Faculty of Sciences, Setif1 University-Ferhat Abbas, Setif, Algeria
- Laboratory of Dosing, Analysis and Characterization with High Resolution, Setif1 University-Ferhat Abbas, Setif, Algeria
| | - Amina Meziri
- Department of Radiotherapy, Fighting Against Cancer Medical Centre of Setif, Setif, Algeria
| | - Sara Khelfa
- Department of Radiotherapy, Fighting Against Cancer Medical Centre of Setif, Setif, Algeria
| | - Noussaiba Ghediri
- Department of Physics, Faculty of Sciences, Setif1 University-Ferhat Abbas, Setif, Algeria
- Laboratory of Dosing, Analysis and Characterization with High Resolution, Setif1 University-Ferhat Abbas, Setif, Algeria
- Department of Radiotherapy, Fighting Against Cancer Medical Centre of El-Oued, El-Oued, Algeria
| |
Collapse
|
5
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Fang H, Zhang L, Chen A, Wu F. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization. Polymers (Basel) 2022; 14:polym14081530. [PMID: 35458279 PMCID: PMC9031752 DOI: 10.3390/polym14081530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA)-thermoplastic polyurethane (TPU) copolymer (PTC) was prepared by melting TPU pellets in molten lactide, followed by in situ ring-opening coordination polymerization. The results from FTIR and 1H-NMR confirmed the formation of the copolymer. PLA/TPU blends with different TPU contents were prepared by melt blending method. SEM and mechanical properties showed a conspicuous phase separation between PLA and TPU. In order to further improve the mechanical properties of the blend, PTC was used as the compatibilizer and the effects of the PTC content on the properties of the blend were investigated. The addition of PTC made TPU particles smaller in PLA matrix and improved the compatibility. With the loading of 5 wt.% PTC, the impact strength of the PLA/TPU blend reached 27.8 kJ/m2, which was 31.1% and 68.5% higher than that of the blend without PTC and pure PLA, respectively. As the content of PTC was more than 5 wt.%, the mechanical properties declined since the compatibilizer tended to form separate clusters, which could reduce the part distributed between the dispersed phase and the matrix, leading to a reduction in the compatibility of the blend. Moreover, the DMA results confirmed PTC could improve the compatibility between PLA and TPU.
Collapse
Affiliation(s)
- Hui Fang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou 350011, China
| | - Lingjie Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Anlin Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Fangjuan Wu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Correspondence:
| |
Collapse
|
7
|
Brancewicz-Steinmetz E, Sawicki J, Byczkowska P. The Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU). MATERIALS 2021; 14:ma14216464. [PMID: 34771989 PMCID: PMC8585249 DOI: 10.3390/ma14216464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
A 3D printer in FDM technology allows printing with two nozzles, which creates an opportunity to produce multi-material elements. Printing from two materials requires special consideration of the interface zone generated between their geometrical boundaries. This article aims to present the possibility of printing with PLA and TPU using commercially available filaments and software to obtain the best possible bond strength between two different polymers with respect to printing parameters, surface pattern (due to the material contact surface’s roughness), and the order of layer application. The interaction at the interface of two surfaces of two different filaments (PLA-TPU and TPU-PLA) and six combinations of patterns were tested by printing seven replicas for each. A total of 12 combinations were obtained. By analyzing pairs of samples (the same patterns, different order of materials), the results for the TPU/PLA samples were better or very close to the results for PLA/TPU. The best variants of pattern combinations were distinguished. Well-chosen printing parameters can prevent a drop in parts efficiency compared to component materials (depending on the materials combination).
Collapse
|
8
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Yahaya BH. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Polymers (Basel) 2021; 13:polym13183087. [PMID: 34577988 PMCID: PMC8472949 DOI: 10.3390/polym13183087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (Z.A.A.H.); (M.J.)
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Sains@Bertam, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
- Correspondence:
| |
Collapse
|
9
|
Jensen T, Wanczyk H, Thaker S, Finck C. Characterization of mesenchymal stem cells in patients with esophageal atresia. J Pediatr Surg 2021; 56:17-25. [PMID: 33121738 DOI: 10.1016/j.jpedsurg.2020.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Preclinical studies demonstrate that tissue engineering and patient-derived stem cells can regenerate tissue. The goal of this study was to determine whether stem cells from esophageal atresia patients (EA) could be utilized for this purpose. METHODS Adipose tissue was obtained from control, esophageal atresia (EA) and long gap esophageal atresia (LGEA) patients. Mesenchymal stem cells (MSCs) were isolated, expanded, characterized and seeded onto tubular scaffolds for 6 days. Scaffolds were characterized for viability, gene expression and cytokine production. RESULTS The average weight of tissue from the EA and LGEA patients was 145.8mg compared to 2981 mg in controls. Despite the small amount of tissue obtained from neonatal patients, cells were expanded to cover a scaffold. After incubating 6 days on the scaffold, cells were viable and proliferating with differences in gene expression between groups. VEGFA production in the supernatant was increased in EA and LGEA patients; while IL6 production was significantly increased in the control patients. CONCLUSIONS This study demonstrates the ability to utilize small amounts of adipose tissue from esophageal atresia patients as a cell source for regenerative medicine. Future studies will focus on use of these cells for tissue regeneration in vivo.
Collapse
Affiliation(s)
- Todd Jensen
- University of Connecticut School of Medicine, Department of Pediatrics, Farmington, CT.
| | - Heather Wanczyk
- University of Connecticut School of Medicine, Department of Pediatrics, Farmington, CT
| | | | - Christine Finck
- University of Connecticut School of Medicine, Department of Pediatrics, Farmington, CT; CT Children's, Department of Pediatric Surgery, Hartford, CT.
| |
Collapse
|
10
|
Tschon M, Brogini S, Parrilli A, Bertoldi S, Silini A, Parolini O, Faré S, Martini L, Veronesi F, Fini M, Giavaresi G. Assessment of the in vivo biofunctionality of a biomimetic hybrid scaffold for osteochondral tissue regeneration. Biotechnol Bioeng 2020; 118:465-480. [PMID: 32997340 DOI: 10.1002/bit.27584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.
Collapse
Affiliation(s)
- Matilde Tschon
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Annapaola Parrilli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Serena Bertoldi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, via Bissolati 57, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Silvia Faré
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Lucia Martini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| |
Collapse
|
11
|
Sadeghi-Soureh S, Jafari R, Gholikhani-Darbroud R, Pilehvar-Soltanahmadi Y. Potential of Chrysin‐loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Seweryn A, Pielok A, Lawniczak-Jablonska K, Pietruszka R, Marcinkowska K, Sikora M, Witkowski BS, Godlewski M, Marycz K, Smieszek A. Zirconium Oxide Thin Films Obtained by Atomic Layer Deposition Technology Abolish the Anti-Osteogenic Effect Resulting from miR-21 Inhibition in the Pre-Osteoblastic MC3T3 Cell Line. Int J Nanomedicine 2020; 15:1595-1610. [PMID: 32210554 PMCID: PMC7069564 DOI: 10.2147/ijn.s237898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction The development of the field of biomaterials engineering is rapid. Various bioactive coatings are created to improve the biocompatibility of substrates used for bone regeneration, which includes formulation of thin zirconia coatings with pro-osteogenic properties. The aim of this study was to assess the biological properties of ZrO2 thin films grown by Atomic Layer Deposition (ALD) technology (ZrO2ALD). Methodology The cytocompatibility of the obtained layers was analysed using the mice pre-osteoblastic cell line (MC3T3) characterized by decreased expression of microRNA 21-5p (miR-21-5p) in order to evaluate the potential pro-osteogenic properties of the coatings. The in vitro experiments were designed to determine the effect of ZrO2ALD coatings on cell morphology (confocal microscope), proliferative activity (cell cycle analysis) and metabolism, reflected by mitochondrial membrane potential (cytometric-based measurement). Additionally, the influence of layers on the expression of genes associated with cell survival and osteogenesis was studied using RT-qPCR. The following genes were investigated: B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), p53 and p21, as well as osteogenic markers, i.e. collagen type 1 (Coll-1), osteopontin (Opn), osteocalcin (Ocl) and runt-related transcription factor 2 (Runx-2). The levels of microRNA (miRNA/miR) involved in the regulation of osteogenic genes were determined, including miR-7, miR-21, miR-124 and miR-223. Results The analysis revealed that the obtained coatings are cytocompatible and may increase the metabolism of pre-osteoblast, which was correlated with increased mitochondrial membrane potential and extensive development of the mitochondrial network. The obtained coatings affected the viability and proliferative status of cells, reducing the population of actively dividing cells. However, in cultures propagated on ZrO2ALD coatings, the up-regulation of genes essential for bone metabolism was noted. Discussion The data obtained indicate that ZrO2 coatings created using the ALD method may have pro-osteogenic properties and may improve the metabolism of bone precursor cells. Given the above, further development of ZrO2ALD layers is essential in terms of their potential clinical application in bone regenerative medicine.
Collapse
Affiliation(s)
- Aleksandra Seweryn
- Institute of Physics, Polish Academy of Sciences, Warsaw PL-02668, Poland
| | - Ariadna Pielok
- Wroclaw University of Environmental and Life Sciences, Department of Experimental Biology, Wroclaw PL-50375, Poland
| | | | - Rafal Pietruszka
- Institute of Physics, Polish Academy of Sciences, Warsaw PL-02668, Poland
| | - Klaudia Marcinkowska
- Wroclaw University of Environmental and Life Sciences, Department of Experimental Biology, Wroclaw PL-50375, Poland
| | - Mateusz Sikora
- Wroclaw University of Environmental and Life Sciences, Department of Experimental Biology, Wroclaw PL-50375, Poland
| | | | - Marek Godlewski
- Institute of Physics, Polish Academy of Sciences, Warsaw PL-02668, Poland
| | - Krzysztof Marycz
- Wroclaw University of Environmental and Life Sciences, Department of Experimental Biology, Wroclaw PL-50375, Poland.,Cardinal Stefan Wyszynski University, Collegium Medicum, Warsaw PL-01938, Poland
| | - Agnieszka Smieszek
- Wroclaw University of Environmental and Life Sciences, Department of Experimental Biology, Wroclaw PL-50375, Poland
| |
Collapse
|
13
|
Marycz K, Smieszek A, Targonska S, Walsh SA, Szustakiewicz K, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu 3+) composite for osteochondral defect regeneration and theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110634. [PMID: 32204070 DOI: 10.1016/j.msec.2020.110634] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
In the current research previously developed composites composed from poly (l-lactide) (PLLA) and nano-hydroxyapatite (10 wt% nHAp/PLLA) were functionalized with different concentrations of europium (III) (Eu3+). The aim of this study was to determine whether Eu3+ ions doped within the 10 wt% nHAp/PLLA scaffolds will improve the bioactivity of composites. Therefore, first set of experiments was designed to evaluate the effect of Eu3+ ions on morphology, viability, proliferation and metabolism of progenitor cells isolated from adipose tissue (hASC). Three different concentration were tested i.e. 1 mol%, 3 mol% and 5%mol. We identified the 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds as the most cytocompatible. Further, we investigated the influence of the composites doped with 3 mol% Eu3+ ions on differentiation of hASC toward bone and cartilage forming cells. Our results showed that 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds promotes osteogenesis and chondrogenesis of hASCs what was associated with improved synthesis and secretion of extracellular matrix proteins specific for bone and articular cartilage tissue. We also proved that obtained biomaterials have bio-imaging function and their integration with bone can be monitored using micro computed tomography (μCT).
Collapse
Affiliation(s)
- Krzysztof Marycz
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland; Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Konrad Szustakiewicz
- Polymer Engineering and Technology Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
14
|
Wang B, Tu Z, Wu C, Hu T, Wang X, Long S, Gong X. Effect of Poly(styrene- ran-methyl acrylate) Inclusion on the Compatibility of Polylactide/Polystyrene- b-Polybutadiene- b-Polystyrene Blends Characterized by Morphological, Thermal, Rheological, and Mechanical Measurements. Polymers (Basel) 2019; 11:polym11050846. [PMID: 31083318 PMCID: PMC6572652 DOI: 10.3390/polym11050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
A poly(styrene-ran-methyl acrylate) (S-MA) (75/25 mol/mol), synthesized by surfactant-free emulsion copolymerization, was used as a compatibilizer for polystyrene-b-polybutadiene-b-polystyrene (SBS)-toughened polylactide (PLA) blends. Upon compatibilization, the blends exhibited a refined dispersed-phase morphology, a decreased crystallinity with an increase in their amorphous interphase, improved thermal stability possibly from the thicker, stronger interfaces insusceptible to thermal energy, a convergence of the maximum decomposition-rate temperatures, enhanced magnitude of complex viscosity, dynamic storage and loss moduli, a reduced ramification degree in the high-frequency terminal region of the Han plot, and an increased semicircle radius in the Cole–Cole plot due to the prolonged chain segmental relaxation times from increases in the thickness and chain entanglement degree of the interphase. When increasing the S-MA content from 0 to 3.0 wt %, the tensile properties of the blends improved considerably until 1.0 wt %, above which they then increased insignificantly, whereas the impact strength was maximized at an optimum S-MA content of ~1.0 wt %, hypothetically due to balanced effects of the medium-size SBS particles on the stabilization of preexisting crazes and the initiation of new crazes in the PLA matrix. These observations confirm that S-MA, a random copolymer first synthesized in our laboratory, acted as an effective compatibilizer for the PLA/SBS blends.
Collapse
Affiliation(s)
- Bocheng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zheng Tu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaotao Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
15
|
Smieszek A, Kornicka K, Szłapka-Kosarzewska J, Androvic P, Valihrach L, Langerova L, Rohlova E, Kubista M, Marycz K. Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome. Cells 2019; 8:E80. [PMID: 30678275 PMCID: PMC6406832 DOI: 10.3390/cells8020080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the influence of metformin (MF) on proliferation and viability of adipose-derived stromal cells isolated from horses (EqASCs). We determined the effect of metformin on cell metabolism in terms of mitochondrial metabolism and oxidative status. Our purpose was to evaluate the metformin effect on cells derived from healthy horses (EqASCHE) and individuals affected by equine metabolic syndrome (EqASCEMS). The cells were treated with 0.5 μM MF for 72 h. The proliferative activity was evaluated based on the measurement of BrdU incorporation during DNA synthesis, as well as population doubling time rate (PDT) and distribution of EqASCs in the cell cycle. The influence of metformin on EqASC viability was determined in relation to apoptosis profile, mitochondrial membrane potential, oxidative stress markers and BAX/BCL-2 mRNA ratio. Further, we were interested in possibility of metformin affecting the Wnt3a signalling pathway and, thus, we determined mRNA and protein level of WNT3A and β-catenin. Finally, using a two-tailed RT-qPCR method, we investigated the expression of miR-16-5p, miR-21-5p, miR-29a-3p, miR-140-3p and miR-145-5p. Obtained results indicate pro-proliferative and anti-apoptotic effects of metformin on EqASCs. In this study, MF significantly improved proliferation of EqASCs, which manifested in increased synthesis of DNA and lowered PDT value. Additionally, metformin improved metabolism and viability of cells, which correlated with higher mitochondrial membrane potential, reduced apoptosis and increased WNT3A/β-catenin expression. Metformin modulates the miRNA expression differently in EqASCHE and EqASCEMS. Metformin may be used as a preconditioning agent which stimulates proliferative activity and viability of EqASCs.
Collapse
Affiliation(s)
- Agnieszka Smieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Jolanta Szłapka-Kosarzewska
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic.
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
| | - Lucie Langerova
- Gene Core BIOCEV, Průmyslová 595, Vestec 252 50, Czech Republic.
| | - Eva Rohlova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, 252 50 Vestec, Czech Republic.
- TATAA Biocenter AB, 411 03 Gothenburg, Sweden.
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|