1
|
Costa JP, Sousa SA, Leitão JH, Marques F, Alves MM, Carvalho MFNN. Insights into the Dual Anticancer and Antibacterial Activities of Composites Based on Silver Camphorimine Complexes. J Funct Biomater 2024; 15:240. [PMID: 39330216 PMCID: PMC11433458 DOI: 10.3390/jfb15090240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydroxyapatite (HAp) is a widely used biocompatible material in orthopedic composite preparations. However, HAp composites that exhibit both anticancer and antibacterial activities through bioactive coordination complexes are relatively rare. To explore orthopedic applications, we blended several silver camphorimine compounds with HAp to create [Ag(I)] composites. All compounds [Ag(NO3)(L)n] (n = 1,2) based on camphorimine (LA), camphor sulfonimine (LB) or imine bi-camphor (LC) ligands demonstrated significant cytotoxic activity (IC50 = 0.30-2.6 μgAg/mL) against osteosarcoma cancer cells (HOS). Based on their structural and electronic characteristics, four complexes (1-4) were selected for antibacterial evaluation against Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa, and Staphylococcus aureus. All complexes (1-4) revealed combined anticancer and antibacterial activities; therefore, they were used to prepare [Ag(I)]:HAp composites of 50:50% and 20:80% weight compositions and the activities of the composites were assessed. Results showed that they retain the dual anticancer and antibacterial characteristics of their precursor complexes. To replicate the clinical context of bone-filling applications, hand-pressed surfaces (pellets) were prepared. It is worth highlighting that no agglutination agent was necessary for the pellet's consistency. The biological properties of the so-prepared pellets were assessed, and the HOS cells and bacteria spreading on the pellet's surface were analyzed by SEM. Notably, composite 4B, derived from the bicamphor (LC) complex [Ag(NO3)(OC10H14N(C6H4)2NC10H14O)], exhibited significant anticancer activity against HOS cells and antibacterial activity against P. aeruginosa, fostering potential clinical applications on post-surgical OS treatment.
Collapse
Affiliation(s)
- Joana P Costa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - Fernanda Marques
- C2TN-Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10, km 139.7, Bobadela, 2695-066 Loures, Portugal
| | - Marta M Alves
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida António José de Almeida, n.º 12, 1000-043 Lisboa, Portugal
| |
Collapse
|
2
|
Santiago Narvaez B, Hameer S, Perry JL, Rojas T, Habgood LG. Partial in-vitro dispersal of S. mutans UA159 biofilms by silver-(I)cyanoximate compounds. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001262. [PMID: 39193022 PMCID: PMC11348005 DOI: 10.17912/micropub.biology.001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Silver(I) cyanoximate compounds have antibacterial activity against the oral pathogen Streptococcus mutans, a resident of oral plaque biofilm. As oral biofilm strategies focus on the inhibition of attachment or physical removal of the existing microbes, we were interested in exploring the ability of six different silver(I) cyanoximate compounds to target and disperse a pre-existing biofilm. Here we report that these compounds were only able to partially disperse S. mutans biofilms as the compounds were more effective at inhibiting biofilm formation. None of the six compounds were able to outperform silver nitrate, a commonly used antibacterial in dentistry.
Collapse
Affiliation(s)
| | - Sarah Hameer
- Biology, Rollins College, Winter Park, Florida, United States
| | - Jamie L. Perry
- Biology, Rollins College, Winter Park, Florida, United States
| | - Tiffany Rojas
- Biology, Rollins College, Winter Park, Florida, United States
| | | |
Collapse
|
3
|
Aktekin MB, Oksuz Z, Turkmenoglu B, Istifli ES, Kuzucu M, Algul O. Synthesis and evaluation of di-heterocyclic benzazole compounds as potential antibacterial and anti-biofilm agents against Staphylococcus aureus. Chem Biol Drug Des 2024; 104:e14601. [PMID: 39085984 DOI: 10.1111/cbdd.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/26/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Cumulative escalation in antibiotic-resistant pathogens necessitates the quest for novel antimicrobial agents, as current options continue to diminish bacterial resistance. Herein, we report the synthesis of di-heterocyclic benzazole structures (12-19) and their in vitro evaluation for some biological activities. Compounds 16 and 17 demonstrated potent antibacterial activity (MIC = 7.81 μg/mL) against Staphylococcus aureus, along with significant anti-biofilm activity. Noteworthy is the capability of Compound 17 to inhibit biofilm formation by at least 50% at sub-MIC (3.90 μg/mL) concentration. Furthermore, both compounds exhibited the potential to inhibit preformed biofilm by at least 50% at the MIC concentration (7.81 μg/mL). Additionally, Compounds 16 and 17 were examined for cytotoxic effects in HFF-1 cells, using the MTT method, and screened for binding interactions within the active site of S. aureus DNA gyrase using in silico molecular docking technique, employing AutoDock 4.2.6 and Schrödinger Glidse programs. Overall, our findings highlight Compounds 16 and 17 as promising scaffolds warranting further optimization for the development of effective antibacterial and anti-biofilm agents.
Collapse
Affiliation(s)
- Mine Buga Aktekin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
- Department of Pharmacy Services, Vocational School of Health Services, Tarsus University, Mersin, Turkey
| | - Zehra Oksuz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Burcin Turkmenoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Çukurova University, Adana, Turkey
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| |
Collapse
|
4
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
5
|
Desai NC, Khasiya AG, Jadeja DJ, Monapara JD, Jethawa AM, Dave BP, Sivan SK, Manga V, Mhaske PC, Chaudhary DR. Synthesis, Antifungal Ergosterol Inhibition, Antibiofilm Activities, and Molecular Docking on β-Tubulin and Sterol 14-Alpha Demethylase along with DFT-Based Quantum Mechanical Calculation of Pyrazole Containing Fused Pyridine-Pyrimidine Derivatives. ACS OMEGA 2023; 8:37781-37797. [PMID: 37867649 PMCID: PMC10586022 DOI: 10.1021/acsomega.3c01722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023]
Abstract
Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives (4a-4o) have been developed. These compounds have been screened against Candida albicans, Aspergillus niger, and Aspergillus clavatus. The synthesized compounds were characterized by well-known spectroscopic techniques, i.e., IR, 1H NMR, 13C NMR, and mass spectrometry. In vitro antifungal results revealed that compound 4n showed activity against C. albicans having MIC value of 200 μg/mL. To know the plausible mode of action, the active derivatives were screened for anti-biofilm and ergosterol biosynthesis inhibition activities. The compounds 4h, 4j, 4k, and 4n showed greater ergosterol biosynthesis inhibition than the control DMSO. To comprehend how molecules interact with the receptor, studies of molecular docking of 4k and 4n have been performed on the homology-modeled protein of β-tubulin. The molecular docking revealed that the active compounds 4h, 4j, 4k, 4l, and 4n interacting with the active site amino acid of sterol 14-alpha demethylase (PDB ID: 5v5z) indicate one of the possible modes of action of ergosterol inhibition activity. The synthesized compounds 4c, 4e, 4h, 4i, 4j, 4k, 4l, and 4n inhibited biofilm formation and possessed the potential for anti-biofilm activity. DFT-based quantum mechanical calculations were carried out to optimize, predict, and compare the vibration modes of the molecule 4a.
Collapse
Affiliation(s)
- Nisheeth C. Desai
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Ashvinkumar G. Khasiya
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Dharmpalsinh J. Jadeja
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Jahnvi D. Monapara
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Aratiba M. Jethawa
- Division
of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364002, India
| | - Bharti P. Dave
- School
of Science, Indrashil University, Rajpur, Gujarat 382 740, India
| | - Sree Kanth Sivan
- Department
of Chemistry, University College for Women,
Osmania University, Koti, 500095 Hyderabad, India
| | - Vijjulatha Manga
- Department
of Chemistry, University College for Women,
Osmania University, Koti, 500095 Hyderabad, India
| | - Pravin C. Mhaske
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College, Tilak Road, Pune 411030, Maharashtra, India
| | - Doongar R. Chaudhary
- CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
6
|
Zeng J, Chen D, Lv C, Qin K, Zhou Q, Pu N, Song S, Wang X. Antimicrobial and anti-biofilm activity of Polygonum chinense L.aqueous extract against Staphylococcus aureus. Sci Rep 2022; 12:21988. [PMID: 36539472 PMCID: PMC9768122 DOI: 10.1038/s41598-022-26399-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Polygonum chinense Linn. (Polygonum chinense L.) is one of the main raw materials of Chinese patent medicines such as Guangdong herbal tea. The increasing antibiotic resistance of S. aureus and the biofilm poses a serious health threat to humans, and there is an urgent need to provide new antimicrobial agents. As a traditional Chinese medicine, the antibacterial effect of Polygonum chinense L. has been reported, but the antibacterial mechanism of Polygonum chinense L.aqueous extract and its effect on biofilm have not been studied in great detail, which hinders its application as an effective antibacterial agent. In this study, the mechanism of action of Polygonum chinense L.aqueous extract on Staphylococcus aureus (S. aureus) and its biofilm was mainly evaluated by morphological observation, flow cytometry and laser confocal experiments. Our findings demonstrate that Polygonum chinense L.aqueous extract has a significant bacteriostatic effect on S. aureus. The result of growth curve exhibits that Polygonum chinense L.aqueous extract presents a significant inhibitory effect against S. aureus. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) reveals that Polygonum chinense L.aqueous extract exerts a potent destruction of the cell wall of S. aureus and a significant inhibitory effect on the formation of S. aureus biofilm. In addition, flow cytometry showed the ability of Polygonum chinense L.aqueous extract to promote apoptosis by disrupting cell membranes of S. aureus. Notably, confocal laser scanning microscopy (CLSM) images illustrated the ability of Polygonum chinense L.aqueous to inhibit the formation of S. aureus biofilms in a dose-dependent manner. These results suggested that Polygonum chinense L.aqueous is a promising alternative antibacterial and anti-biofilm agent for combating infections caused by planktonic and biofilm cells of S. aureus.
Collapse
Affiliation(s)
- Jianye Zeng
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Dandan Chen
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Chunli Lv
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Kening Qin
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Qin Zhou
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Na Pu
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Shanshan Song
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Xiaomin Wang
- grid.417409.f0000 0001 0240 6969School of Preclinical Medicine of Zunyi Medical University, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China ,National Clinical Research Center for Infectious Diseases, Shenzhen, 518112 Guangdong People’s Republic of China
| |
Collapse
|
7
|
Mares SE, King MM, Kubo A, Khanov AA, Lutter EI, Youssef N, Patrauchan MA. carP, encoding a Ca 2+-regulated putative phytase, is evolutionarily conserved in Pseudomonas aeruginosa and has potential as a biomarker. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001004. [PMID: 33295862 PMCID: PMC8131022 DOI: 10.1099/mic.0.001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/24/2020] [Indexed: 01/16/2023]
Abstract
Pseudomonas aeruginosa infects patients with cystic fibrosis, burns, wounds and implants. Previously, our group showed that elevated Ca2+ positively regulates the production of several virulence factors in P. aeruginosa, such as biofilm formation, production of pyocyanin and secreted proteases. We have identified a Ca2+-regulated β-propeller putative phytase, CarP, which is required for Ca2+ tolerance, regulation of the intracellular Ca2+ levels, and plays a role in Ca2+ regulation of P. aeruginosa virulence. Here, we studied the conservation of carP sequence and its occurrence in diverse phylogenetic groups of bacteria. In silico analysis revealed that carP and its two paralogues PA2017 and PA0319 are primarily present in P. aeruginosa and belong to the core genome of the species. We identified 155 single nucleotide alterations within carP, 42 of which lead to missense mutations with only three that affected the predicted 3D structure of the protein. PCR analyses with carP-specific primers detected P. aeruginosa specifically in 70 clinical and environmental samples. Sequence comparison demonstrated that carP is overall highly conserved in P. aeruginosa isolated from diverse environments. Such evolutionary preservation of carP illustrates its importance for P. aeruginosa adaptations to diverse environments and demonstrates its potential as a biomarker.
Collapse
Affiliation(s)
- Sergio E. Mares
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michelle M. King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anna A. Khanov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Jee SC, Kim M, Sung JS, Kadam AA. Efficient Biofilms Eradication by Enzymatic-Cocktail of Pancreatic Protease Type-I and Bacterial α-Amylase. Polymers (Basel) 2020; 12:polym12123032. [PMID: 33348879 PMCID: PMC7766206 DOI: 10.3390/polym12123032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Removal of biofilms is extremely pivotal in environmental and medicinal fields. Therefore, reporting the new-enzymes and their combinations for dispersal of infectious biofilms can be extremely critical. Herein, for the first time, we accessed the enzyme "protease from bovine pancreas type-I (PtI)" for anti-biofilm properties. We further investigated the anti-biofilm potential of PtI in combination with α-amylase from Bacillus sp. (αA). PtI showed a very significant biofilm inhibition effect (86.5%, 88.4%, and 67%) and biofilm prevention effect (66%, 64%, and 70%), against the E. coli, S. aureus, and MRSA, respectively. However, the new enzyme combination (Ec-PtI+αA) exhibited biofilm inhibition effect (78%, 90%, and 93%) and a biofilm prevention effect (44%, 51%, and 77%) against E. coli, S. aureus, and MRSA, respectively. The studied enzymes were found not to be anti-bacterial against the E. coli, S. aureus, and MRSA. In summary, the PtI exhibited significant anti-biofilm effects against S. aureus, MRSA, and E. coli. Ec-PtI+αA exhibited enhancement of the anti-biofilm effects against S. aureus and MRSA biofilms. Therefore, this study revealed that this Ec-PtI+αA enzymatic system can be extremely vital for the treatment of biofilm complications resulting from E. coli, S. aureus, and MRSA.
Collapse
Affiliation(s)
- Seung-Cheol Jee
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Min Kim
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (S.-C.J.); (M.K.); (J.-S.S.)
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea
- Correspondence: or ; Tel.: +82-31-961-5616; Fax: +82-31-961-5108
| |
Collapse
|
9
|
Gerasimchuk N. Unusual Four-Membered Metallocycles in Complexes of Main Group III Metals. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Casimero C, Ruddock T, Hegarty C, Barber R, Devine A, Davis J. Minimising Blood Stream Infection: Developing New Materials for Intravascular Catheters. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E49. [PMID: 32858838 PMCID: PMC7554993 DOI: 10.3390/medicines7090049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Catheter related blood stream infection is an ever present hazard for those patients requiring venous access and particularly for those requiring long term medication. The implementation of more rigorous care bundles and greater adherence to aseptic techniques have yielded substantial reductions in infection rates but the latter is still far from acceptable and continues to place a heavy burden on patients and healthcare providers. While advances in engineering design and the arrival of functional materials hold considerable promise for the development of a new generation of catheters, many challenges remain. The aim of this review is to identify the issues that presently impact catheter performance and provide a critical evaluation of the design considerations that are emerging in the pursuit of these new catheter systems.
Collapse
Affiliation(s)
| | | | | | | | | | - James Davis
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (C.C.); (T.R.); (C.H.); (R.B.); (A.D.)
| |
Collapse
|
11
|
Search for the shortest intermetallic Tl---Tl contacts: Synthesis and characterization of Thallium(I) coordination polymers with several mono- and bis-cyanoximes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Chu L, Zhou X, Shen Y, Yu Y. Inhibitory effect of trisodium citrate on biofilms formed by Klebsiella pneumoniae. J Glob Antimicrob Resist 2020; 22:452-456. [PMID: 32387258 DOI: 10.1016/j.jgar.2020.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is a significant nosocomial pathogen related to ventilator-associated pneumonia owing to biofilm formation. Trisodium citrate (TSC) has antibacterial activity, but there is little research on the effect of TSC on biofilm formed by K. pneumoniae. The aims of this study were to evaluate the inhibitory effect of 4% TSC on K. pneumoniae biofilm formation and to determine the best time of TSC addition for biofilm inhibition. METHODS A total of 45 K. pneumoniae strains isolated from tracheal tip and sputum specimens were included. Modified Congo red agar was used to screen for biofilm production. Biofilm-positive strains were cultured for 4 days. TSC (4%) was added either initially or 3 days later. Crystal violet staining was used to quantify biofilm mass by measuring the optical density at 570 nm (OD570). Scanning electron microscopy (SEM) was used to observe biofilm morphology. RESULTS The OD570 was significantly lower in the 4% TSC group than that in the no-TSC group during the 4-day experiment. Compared with addition of TSC after 3 days, initial TSC addition resulted in a significant absorbance decrease (Day 4, 0.63 ± 0.11 later-TSC group vs. 0.41 ± 0.16 initial-TSC group). As observed by SEM, bacteria were stacked most densely in the no-TSC group on Day 4. In contrast, few bacteria were observed when TSC was added initially, whilst bacteria were obviously dispersed when TSC was added after 3 days. CONCLUSION TSC can inhibit K. pneumoniae biofilm formation and has the best effect when added initially.
Collapse
Affiliation(s)
- Lijuan Chu
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China.
| | - Xingyan Zhou
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Yan Shen
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Yu Yu
- Department of Clinical Laboratory Center, Chongqing Health Center for Women and Children, Chongqing 401147, China
| |
Collapse
|
13
|
Tăbăcaru A, Pettinari C, Bușilă M, Dinică RM. New Antibacterial Silver(I) Coordination Polymers Based on a Flexible Ditopic Pyrazolyl-Type Ligand. Polymers (Basel) 2019; 11:polym11101686. [PMID: 31618948 PMCID: PMC6835455 DOI: 10.3390/polym11101686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
In the last two decades, a tremendous amount of attention has been directed towards the design of antibacterial silver(I)-based materials, including coordination polymers (CPs) built up with a great variety of oxygen and nitrogen-containing ligands. Herein, a family of six new silver(I)-based CPs, having the general stoechiometric formula [Ag(H2DMPMB)(X)] (X = NO3, 1; CF3CO2, 2; CF3SO3, 3; BF4, 4; ClO4, 5; and PF6, 6) and incorporating the flexible ditopic pyrazolyl-type ligand 4,4'-bis((3,5-dimethyl-1H-pyrazol-4-yl)methyl)biphenyl (H2DMPMB), has been prepared by the chemical precipitation method involving the reaction of silver(I) salts with H2DMPMB in the 1:1 molar ratio, in alcohols, or acetonitrile at room temperature for two-hours. The new silver(I)-based polymeric materials were characterized by means of Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA), allowing for the proposition that their structures comprise one-dimensional chains, with the silver(I) ions mostly assuming a T-shapped stereochemistry completed by the exo-bidentate ligands and counter-anions. The obtained silver(I) CPs showed a remarkable light insensitivity and stability in the air, are insoluble in water and in most common organic solvents, and possess appreciable thermal stabilities spanning the range 250-350 °C. The antibacterial activity of the obtained silver(I) CPs was tested against the Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus) using the Tetrazolium/Formazan test (TTC), by measuring the bacterial viability at different time intervals. The complete reduction of both bacterial strains occurred after 24 h of exposure to all silver(I) CPs, the bacterial viability values for S. aureus reaching 8% for compounds 3, 5, and 6 after only two-hours.
Collapse
Affiliation(s)
- Aurel Tăbăcaru
- Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, "Dunarea de Jos" University of Galati, 111 Domneasca Street, 800201 Galați, Romania.
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino MC, Italy.
| | - Mariana Bușilă
- Department of Materials Science and Engineering, Faculty of Engineering, "Dunarea de Jos" University of Galati, 111 Domneasca Street, 800201 Galați, Romania.
| | - Rodica Mihaela Dinică
- Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, "Dunarea de Jos" University of Galati, 111 Domneasca Street, 800201 Galați, Romania.
| |
Collapse
|