1
|
Cheng L, Zhang Y, Xu Q, Li Z, Liu Z, Dai F. Hyaluronic acid/silk fibroin nanoparticles loaded with methotrexate for topical treatment of psoriasis. Int J Pharm X 2025; 9:100312. [PMID: 39802890 PMCID: PMC11722578 DOI: 10.1016/j.ijpx.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties. This study aimed to develop and characterize a novel drug delivery nanocarrier for MTX using SF nanoparticles modified with hyaluronic acid (HA) and to assess their potential for skin-targeted drug delivery with reduced transdermal permeation. The nanoparticles were thoroughly characterized, demonstrating a uniform particle size, high drug-loading capacity, pH sensitivity, and excellent slow-release properties. In vitro and in vivo experiments further indicated that these nanoparticles effectively reduced psoriasis-induced inflammatory responses, including erythema and scaling, by inhibiting keratinocyte proliferation and decreasing levels of pro-inflammatory cytokines. The inclusion of HA improved nanoparticle targeting, particularly through interactions with overexpressed CD44 proteins in psoriatic skin, resulting in enhanced methotrexate accumulation at the sites of inflammation and improved therapeutic efficacy. Our findings suggest that HA/SF nanoparticles loaded with MTX represent a promising, safe transdermal delivery system for the localized treatment of psoriasis.
Collapse
Affiliation(s)
- Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Yanhua Zhang
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
- Luoyang Central Hospital, No. 288 Zhongzhou middle road, Xigong district, Luoyang, Henan province, 471000, China
| | - Qian Xu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Zulan Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Schulte N, Damonte G, Rocca VM, Todea A, Monticelli O, Pellis A. Bis-pyrrolidone structures as versatile building blocks for the synthesis of bio-based polyesters and for the preparation of additives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:1984-1996. [PMID: 39829967 PMCID: PMC11736262 DOI: 10.1039/d4gc04951a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
In this work, three bis-pyrrolidone-based structures (BP) were synthesized combining dimethyl itaconate (DMI), the dimethyl ester derivative of itaconic acid, with various aliphatic diamines having a C4 to C12 carbon chain length with the aim of developing novel bio-based building blocks. All three BPs were obtained with a purity >93% and could further be used without performing any tedious purification step, therefore allowing an easy scalability of the synthesis on a 10 g scale. Their potential application was demonstrated in two key areas of modern polymer science: (1) the enzymatic synthesis of polyesters and (2) their use as poly(lactic acid) (PLA) additives. Firstly, the possibility of obtaining oligoesters by reacting the BP monomers with various aliphatic diols in a solventless reaction system and under mild conditions (T < 90 °C) was demonstrated thanks to the use of enzymatic catalysis. Linear oligoesters having mean average molecular weights between 1000 g mol-1 and 6100 g mol-1 and dispersity values <2 were successfully obtained. When applying the BP structures as PLA additives, the incorporation of a 10% w w-1 BP in the polyester matrix resulted in systems with an 8× increased elongation at break and a decrease in the glass transition temperature compared to the neat polymer matrix.
Collapse
Affiliation(s)
- Nele Schulte
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale via Dodecaneso 31 16146 Genova Italy
| | - Giacomo Damonte
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale via Dodecaneso 31 16146 Genova Italy
| | - Valeria Marisa Rocca
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale via Dodecaneso 31 16146 Genova Italy
| | - Anamaria Todea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara Carol Telbisz 6 300001 Timişoara Romania
| | - Orietta Monticelli
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale via Dodecaneso 31 16146 Genova Italy
| | - Alessandro Pellis
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale via Dodecaneso 31 16146 Genova Italy
| |
Collapse
|
3
|
Hu M, Li M, Ma R, Li X, Ren X, Du L, Zeng C, Li J, Zhang W. Biomechanical analysis of titanium-alloy and biodegradable implants in dual plate osteosynthesis for AO/ASIF type 33-C2 fractures. Heliyon 2024; 10:e26213. [PMID: 38404819 PMCID: PMC10884484 DOI: 10.1016/j.heliyon.2024.e26213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Background and objective Treating geriatric osteoporotic distal femur fractures has always presented challenges, but developing biodegradable materials has brought new opportunities for therapeutic intervention. Despite this progress, there currently needs to be more evidence-based biomechanical guidelines for using dual plate fixation and biodegradable materials in treating osteoporotic comminuted distal femoral fractures.In this study, finite element analysis was conducted to evaluate the mechanical effectiveness of different implant materials (titanium alloys, biodegradable materials, and combinations of both) in the fixation of physiological and osteoporotic distal femoral fractures. Methods We constructed finite element models of 33-C2 fractures and three types of plates: the Lateral Less Invasive Stabilization System (LISS) plate, the titanium-alloy medial plate (TAP), and the biodegradable plate (BP). To evaluate the biomechanical advantages in both physiological femur (PF) and osteoporotic femur (OF) conditions, three scenarios were developed: LISS + TAP, LISS + BP, and double biodegradable plates (DBPs). Five loading conditions were applied to measure structural stiffness, fracture micromotion, and implant stress: medio-lateral four-point bending, antero-posterior four-point bending, axial loading, torsional loading, and sideways falling. Several parameters were examined, including peak Von Mises Stress (VMS) of the femur and lateral plate, maximum displacement, bending angle, torsional angle of fracture, and risk of fracture. Results In four-point bending tests, the lateral plate of the DBPs group exhibited a slightly lower peak VMS compared to the LISS + TAP and LISS + BP groups. When subjected to axial loading, the stiffness values of the LISS + TAP (OF) were 1.42 times and 1.86 times higher than LISS + BP (OF) and DBPs (OF) groups, and the peak VMS of lateral plate of DBPs (OF) construct was approximately 2% and 16% lower than that of the LISS + TAP (OF) and LISS + BP (OF) constructs. Under torsional loading, DBPs (OF) demonstrated rotational stiffness that was respectively 2% and 52% greater than that of LISS + TAP (OF) and LISS + BP (OF). Regarding the peak VMS of femur, the values of DBPs (OF) were almost 8% and 15% lower than those of LISS + TAP (OF) and LISS + BP (OF). Conclusions The use of DBPs at 11.33 GPa facilitated early mobilization of load-bearing joints but exhibited limited ability to support full weight-bearing activities. Though LISS + TAP met practical strength requirements, one should consider the potential biological irritation and stress shielding. Thus, employing a combination of biodegradable and metal internal fixation is a valid approach to effectively treat weight-bearing joint fractures in clinical practice.
Collapse
Affiliation(s)
- Mengmeng Hu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 100048, China
| | - Meng Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 100048, China
| | - Rui Ma
- Hainan Hospital of PLA General Hospital, No.80 Jianglin Road, Sanya, Hainan Province, 572013, China
| | - Xiaoya Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 100048, China
| | - Xiaomeng Ren
- Medical School of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Longbo Du
- Medical School of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Chuyang Zeng
- Medical School of PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Jiantao Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 100048, China
| | - Wei Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
4
|
Xu BT, Jin DZ, Yu Y, Zhang Q, Weng WJ, Ren KX, Tai YL. Nanoclay-reinforced alginate aerogels: preparation and properties. RSC Adv 2024; 14:954-962. [PMID: 38174253 PMCID: PMC10759182 DOI: 10.1039/d3ra07132d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Flame-retardant materials that are mechanically robust, low cost and non-toxic from green and renewable resources are highly demanded in many fields. In this work, aerogels of alginate extracted from seaweeds were fabricated and reinforced with nanoclay. The nanoclay particles increase the molecular ordering (crystallinity) of the aerogels through physical interactions with alginate molecules. They also served as cross-linkers and flame-retardant additives to improve the mechanical strength, elasticity, thermal stability and flame-retarding properties of the aerogels. Under exposure to a butane flame (750 °C), the aerogels maintained their structural integrity and did not produce drips. An optimal loading of nanoclay which led to the best flame retardancy (non-flammable) of the aerogel was determined. The results of this work demonstrate that alginate-nanoclay composite aerogels can be promisingly used as flame-retardant thermal insulation materials.
Collapse
Affiliation(s)
- Bang-Ting Xu
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Da-Zhi Jin
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Yi Yu
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Qi Zhang
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Weng-Jie Weng
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Kai-Xiang Ren
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| | - Yu-Lei Tai
- School Laboratory of Medicine, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
- Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College Hangzhou Zhejiang 310053 P. R. China
| |
Collapse
|
5
|
Alsafrani AE, Adeosun WA, Alruwais RS, Marwani HM, Asiri AM, Khan A. Metal-organic frameworks (MOFs) composite of polyaniline-CNT@aluminum succinate for non-enzymatic nitrite sensor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26965-8. [PMID: 37160857 DOI: 10.1007/s11356-023-26965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Nitrite has been linked to a variety of health issues, as well as cancer and oxygen deficiency when its allowable limit is exceeded. Nitrite monitoring and detection are required due to the negative effects on public health. Metal-organic frameworks (MOFs)-based nanomaterials/composites have recently been shown to have the potential for various biological and medical applications like sensing, imaging, and drug delivery. As a result, this research creates an efficient electrochemical sensor by incorporating MOFs into polyaniline (PANI)/carbon nanotube (CNT) cast on the GCE. In situ oxidative polymerization was used to construct an aluminum succinate MOF (Al-Succin)-incorporated CNT/PANI nanocomposite (PANI/CNT@Al-Succin) and well characterized by various characterization techniques, namely, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential thermal analysis (TGA-DTA), cyclic voltammetry (CV), and four probes to measure DC electrical conductivity. Cyclic voltammetry and linear sweep voltammetry techniques were employed to detect nitrite on the surface of PANI/CNT@Al-Succin-modified glassy carbon electrode (GCE). PANI/CNT@Al-Succin-modified GCE demonstrated good current response and electrocatalytic property towards nitrite compared to bare GCE. The newly synthesized electrode exhibited a high electrocatalytic activity towards nitrite oxidation and showed a linear response ranging from 5.7 to 74.1 μM for CV and 8.55-92.62 μM for LSV. The obtained LOD values for CV (1.16 μM) and LSV (0.08 μM) were significantly below the WHO-defined acceptable nitrite limit in drinking water. Results of recovery studies for real samples of apple juice, orange juice, and bottled water were 98.92%, 99.38%, and 99.90%, respectively. These values show practical usability of PANI/CNT@Al-Succin in real samples.
Collapse
Affiliation(s)
- Amjad E Alsafrani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Waheed A Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, 17472, Saudi Arabia.
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Li H, Wang X, Gong Y, Zhao H, Liu Z, Tao L, Peng Y, Ma K, Hu Z, Dastan D. Polyimide/crown ether composite film with low dielectric constant and low dielectric loss for high signal transmission. RSC Adv 2023; 13:7585-7596. [PMID: 36908549 PMCID: PMC9993404 DOI: 10.1039/d2ra07043j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Dielectric properties of polyimide (PI) are constrained by its inherent molecular structure and inter-chain packing capacities. The compromised dielectric properties of PI, however, could be rescued by introducing trifluoromethyl and forming a host-guest inclusion complex with the introduction of crown ethers (CEs). Herein, we report PI/crown ether composite films as a communication substrate that could be applied under high frequency circumstances. In this work, three kinds of bisphenol A-containing diamine (2,2'-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(2-methyl-4-aminophenoxy)phenyl]propane, and 2,2-bis[4-(2-trifluoro methyl-4-aminophenoxy)phenyl]propane) are synthesized and polymerized with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride to prepare low-dielectric PI films by means of thermal imidization. Crown ethers are introduced into the PI with different mass fractions to obtain three series of PI films. Following the combination of trifluoromethyl into the molecular chain of PI, high frequency dielectric loss of modified PI films can be effectively reduced. The properties of these materials (especially the dielectric properties) are thoroughly explored by crown ether addition. The results show that the crown ether addition process can offer crown ethers with increased free volume of PI matrix, thus allowing them to generate a special necklace-like supramolecular structure, which makes the crown ether disperse more uniformly in the PI matrix, resulting in improved dielectric properties. Importantly, the dielectric constant and dielectric loss of the composite films at high frequencies are remarkably reduced to 2.33 and 0.00337, respectively. Therefore, these composite films are expected to find extensive use as a 5G communication substrate at high frequencies in the future.
Collapse
Affiliation(s)
- Heming Li
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Xinming Wang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Yuze Gong
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China .,Sinochem LantianFluoro Materials Co., Ltd China
| | - Hongbin Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China .,Oxiranchem Holding Group Co. Ltd Liaoyang 111003 China
| | - Zhaobin Liu
- Oxiranchem Holding Group Co. Ltd Liaoyang 111003 China
| | - Lin Tao
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Youyou Peng
- Montverde Future Academy Shanghai 88 jianhao Road, Pudong New District Shanghai 201318 China
| | - Ke Ma
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 China .,Oxiranchem Holding Group Co. Ltd Liaoyang 111003 China
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University Ithaca NY 14850 USA
| |
Collapse
|
7
|
Milakin KA, Gupta S, Pop-Georgievski O, Morávková Z, Acharya U, Taboubi O, Breitenbach S, Gavrilov N, Unterweger C, Bober P. Macroporous nitrogen-containing carbon for electrochemical capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sridhar V, Park H. Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water. MATERIALS 2020; 13:ma13184144. [PMID: 32957727 PMCID: PMC7560256 DOI: 10.3390/ma13184144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
Till date, waste plastics are either down-cycled to cheap products like fibers or burnt in incinerators to generate heat. In this manuscript, we report a simple and effective technique for microwave induced transformation of waste polyethylene terephthalate (wPET) to carbon nano-tubes (CNT). Iron nano-particles dispersed on graphene substrate acted as catalyst for CNT growth whereas urea served the dual role of de-polymerisation of wPET and also as nitrogen doping agent. Application of our newly synthesized 3-D meso-porous graphene-nitrogen doped carbon nanotube- iron electrode (Fe@NCNT-rGO) as electro-catalyst for oxygen reduction reaction (ORR) shows a positive half-wave potential (E1/2) of 0.75 V vs. RHE (reversible hydrogen electrode), nearly ideal four-electron pathway and excellent methanol tolerance when compared to commercial 20% Pt/C. The utility of Fe@NCNT-rGO for removal of bisphenol A from contaminated waters is also reported.
Collapse
Affiliation(s)
- Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
| | - Hyun Park
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-(515)-102-730
| |
Collapse
|