1
|
Wang Q, Wang L, Zhang M, Peng Z, Lu Y, Lv P, Yang J. Preparation of novel membranes with multiple hydrogen bonding sites and π-conjugated structure for high temperature proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:5318-5321. [PMID: 38666525 DOI: 10.1039/d4cc01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A novel poly(dibenzofuran isatin) (PBFI) with π conjugated structure was synthesized. Through the facile ring-opening reaction, flexible and hydrophilic side chains with hydroxyl and quaternary ammounium groups were grafted into PBFI. Obtained PBFI-x%GTA membranes with twisted polymer structure and multiple hydrogen bonding sites displayed high HT-PEMFC performance.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Lele Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Meichen Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Zhen Peng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yao Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Peiru Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
2
|
Cao D, Sun X, Gao H, Pan L, Li N, Li Y. Crosslinked Polynorbornene-Based Anion Exchange Membranes with Perfluorinated Branch Chains. Polymers (Basel) 2023; 15:polym15051073. [PMID: 36904314 PMCID: PMC10007585 DOI: 10.3390/polym15051073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
To investigate the effect of perfluorinated substituent on the properties of anion exchange membranes (AEMs), cross-linked polynorbornene-based AEMs with perfluorinated branch chains were prepared via ring opening metathesis polymerization, subsequent crosslinking reaction, and quaternization. The crosslinking structure enables the resultant AEMs (CFnB) to exhibit a low swelling ratio, high toughness, and high water uptake, simultaneously. In addition, benefiting from the ion gathering and side chain microphase separation caused by their flexible backbone and perfluorinated branch chain, these AEMs had high hydroxide conductivity up to 106.9 mS cm-1 at 80 °C even at low ion content (IEC < 1.6 meq g-1). This work provides a new approach to achieve improved ion conductivity at low ion content by introducing the perfluorinated branch chains and puts forward a referable way to prepare AEMs with high performance.
Collapse
Affiliation(s)
- Dafu Cao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaowei Sun
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Huan Gao
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Pan
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Correspondence:
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yuesheng Li
- Institute of Advanced Polymer Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
3
|
Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, Yang H. Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. MEMBRANES 2021; 11:397. [PMID: 34072048 PMCID: PMC8228207 DOI: 10.3390/membranes11060397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
Collapse
Affiliation(s)
- Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Chun Yik Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Sarala Selambakkannu
- Radiation Processing Technology Division, Malaysia Nuclear Agency, Kajang 43000, Malaysia; (S.S.); (N.A.F.O.)
| | - Nor Azillah Fatimah Othman
- Radiation Processing Technology Division, Malaysia Nuclear Agency, Kajang 43000, Malaysia; (S.S.); (N.A.F.O.)
| | - Hsiharng Yang
- Graduate Institute of Precision Engineering and Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Zhang F, Li T, Chen W, Wu X, Yan X, Xiao W, Zhang Y, Wang X, He G. Electron-Donating C-NH 2 Link Backbone for Highly Alkaline and Mechanical Stable Anion Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10490-10499. [PMID: 33591159 DOI: 10.1021/acsami.1c00324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aryl-ether cleavage and benzylic quaternary ammonium (QA) group degradation are promoted by C═O groups in most commercial anion exchange membrane materials. Herein, a novel strategy of converting C═O groups to the electron-donating C-NH2 linkages in conventional poly(arylene ether ketone)s is proposed by reductive amination via Leuckart reaction. Density functional theory (DFT) calculations indicate that the model compound containing C-NH2 linkage exhibits much higher barrier heights for aryl-ether cleavage and QA group degradation by enhancing the electronic cloud density on both the ether-connected carbon and the benzylic carbon. The C-NH2 linkages also induce hydrogen bond networks in the membranes, which enhance intermolecular interaction and provide additional hydroxide transport sites. As a result, the C-NH2 linkage membranes exhibit excellent hydroxide conductivity (108.2 mS cm-1 at 80 °C) and tensile strength (48.4 MPa) with high elongation at break (50.8%). The C-NH2 linkage membranes also show outstanding alkaline stability with no detectable backbone degradation even in 4 M KOH at 80 °C for 400 h, which is at the top-level among the state-of-the-art main chain architecture AEMs. This study proposes a new strategy for the synthesis of highly stable AEMs based on electron-donating C-NH2 link backbone.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tiantian Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wanting Chen
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhou Wang
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Kim SH, Lee KH, Chu JY, Kim AR, Yoo DJ. Enhanced Hydroxide Conductivity and Dimensional Stability with Blended Membranes Containing Hyperbranched PAES/Linear PPO as Anion Exchange Membranes. Polymers (Basel) 2020; 12:polym12123011. [PMID: 33339390 PMCID: PMC7766666 DOI: 10.3390/polym12123011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
A series of novel blended anion exchange membranes (AEMs) were prepared with hyperbranched brominated poly(arylene ether sulfone) (Br-HB-PAES) and linear chloromethylated poly(phenylene oxide) (CM-PPO). The as-prepared blended membranes were fabricated with different weight ratios of Br-HB-PAES to CM-PPO, and the quaternization reaction for introducing the ionic functional group was performed by triethylamine. The Q-PAES/PPO-XY (quaternized-PAES/PPO-XY) blended membranes promoted the ion channel formation as the strong hydrogen bonds interconnecting the two polymers were maintained, and showed an improved hydroxide conductivity with excellent thermal behavior. In particular, the Q-PAES/PPO-55 membrane showed a very high hydroxide ion conductivity (90.9 mS cm−1) compared to the pristine Q-HB-PAES membrane (32.8 mS cm−1), a result supported by the morphology of the membrane as determined by the AFM analysis. In addition, the rigid hyperbranched structure showed a suppressed swelling ratio of 17.9–24.9% despite an excessive water uptake of 33.2–50.3% at 90 °C, and demonstrated a remarkable alkaline stability under 2.0 M KOH conditions over 1000 h.
Collapse
Affiliation(s)
- Sang Hee Kim
- Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (S.H.K.); (A.R.K.)
| | - Kyu Ha Lee
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Ji Young Chu
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Ae Rhan Kim
- Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (S.H.K.); (A.R.K.)
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (S.H.K.); (A.R.K.)
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea; (K.H.L.); (J.Y.C.)
- Correspondence: ; Tel.: +82-63-270-3608
| |
Collapse
|
6
|
Zhang C, Zhang W, Wang Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Membranes and Technology Integration. MEMBRANES 2020; 10:E169. [PMID: 32751246 PMCID: PMC7463704 DOI: 10.3390/membranes10080169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Inorganic acids are commonly used in mining, metallurgical, metal-processing, and nuclear-fuel-reprocessing industries in various processes, such as leaching, etching, electroplating, and metal-refining. Large amounts of spent acidic liquids containing toxic metal ion complexes are produced during these operations, which pose a serious hazard to the living and non-living environment. Developing economic and eco-friendly regeneration approaches to recover acid and valuable metals from these industrial effluents has focused the interest of the research community. Diffusion dialysis (DD) using anion exchange membranes (AEMs) driven by an activity gradient is considered an effective technology with a low energy consumption and little environmental contamination. In addition, the properties of AEMs have an important effect on the DD process. Hence, this paper gives a critical review of the properties of AEMs, including their acid permeability, membrane stability, and acid selectivity during the DD process for acid recovery. Furthermore, the DD processes using AEMs integrated with various technologies, such as pressure, an electric field, or continuous operation are discussed to enhance its potential for industrial applications. Finally, some directions are provided for the further development of AEMs in DD for acid recovery from acidic waste solutions.
Collapse
Affiliation(s)
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (C.Z.); (Y.W.)
| | | |
Collapse
|