1
|
Lawal KG, Nazir A, Sundarakani B, Stathopoulos C, Maqsood S. Bioactive biopolymer films reinforced with cellulose nanocrystals and green-extracted polyphenols from date seeds for veal meat preservation. Int J Biol Macromol 2025; 310:143275. [PMID: 40268033 DOI: 10.1016/j.ijbiomac.2025.143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
This study investigated the effectiveness of bioactive films fabricated using chitosan (Cs) reinforced with cellulose nanocrystals (CNC) and polyphenolic components extracted using natural deep eutectic solvents (NADES), both derived from date seeds. The CsCNC films with NADES-extracted date seed polyphenols (DSP) showed significant antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli. Total phenolic content (0.01 to 0.20 mg GAE/mL), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (0.10 to 3.22 mmol TE/mL), and ferric-ion reducing antioxidant power (0.49 to 3.31 μmol TE/mL) improved significantly. Elongation at break (46.53 % to 90.87 %) and thickness (0.08 mm to 0.17 mm) increased while tensile strength (11.62 MPa to 3.30 MPa) decreased after incorporating DSP. The films improved UV-shielding ability, although DSP affected water barrier properties (2.91 to 7.83 × 10-10 g/m.s.Pa) and increased solubility and swelling rate. The performance of CsCNC bioactive film containing 4 % DSP for preserving veal meat during refrigeration for 8 days was studied. Compared to conventional cling film, the bioactive film retained meat quality by preserving pH, color, and lipid stability while delaying microbial spoilage. This study demonstrates the potential of valorizing both phenolic and cellulosic fractions from date seeds to develop an eco-friendly and bioactive packaging film.
Collapse
Affiliation(s)
- Kehinde Ganiyat Lawal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, Dubai, P.O. Box 20183, United Arab Emirates
| | | | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Zubeltzu J, Rezabal E. Structural insights into carboxylic-acid based DES across H-bond donor ratios: impact of CL&Pol refinement. Phys Chem Chem Phys 2024; 26:27486-27497. [PMID: 39450431 DOI: 10.1039/d4cp03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DES) are of significant interest due to their eco-friendly nature and vast applications. Carboxylic-acid-based choline chloride (ChCl) DES are notable for their roles in electrochemical, drug delivery, and biomass processing applications, with efficiency influenced by the ChCl : carboxylic acid ratio. Understanding these mechanisms requires detailed knowledge of their structure. This study investigates the choline chloride-lactic acid (ChCl:LA) DES structure using ab initio molecular dynamics simulations to assess the accuracy of the transferable and polarizable CL&Pol force field. We observe that the CL&Pol force field qualitatively captures primary interactions within the system, despite numerical discrepancies due to its transferable nature. To refine the original force field, we incorporate two improvements: tuning the σ parameter of the strongest hydrogen-bond interactions and incorporating the Tang-Toennies damping function to correct chloride ion overpolarization. The first adjustment enhances the targeted interactions and significantly improves the short-range structure of the entire hydrogen-bond network. The second refinement, although minimally impacting the structure at low LA ratios, proves critical at higher ratios by correcting the oversegregation of ionic molecules in the original force field. Consequently, it becomes essential for reliably depicting the medium and long-range structure of the system, highlighting that the specific parameter of the force field to be refined depends on the structural scale under investigation. Notably, the long-range structure results from the competition between choline and carboxylic acid for chloride, rebalanced by the suggested modifications, especially the overpolarization correction.
Collapse
Affiliation(s)
- Jon Zubeltzu
- Gipuzkoako Ingeniaritza Eskola, Europa Plaza, 1, Donostia, 20018, Euskadi, Spain.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
| | - Elixabete Rezabal
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea, 4, Donostia, 20018, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal Ibilbidea, 3, Donostia, 20018, Euskadi, Spain
| |
Collapse
|
3
|
Lawal KG, Nazir A, Sundarakani B, Stathopoulos C, Maqsood S. Unveiling the effect of natural deep eutectic solvents-based date seed polyphenolic extract on the properties of chitosan-PVA films and its application in shrimp packaging. Int J Biol Macromol 2024; 280:135593. [PMID: 39276880 DOI: 10.1016/j.ijbiomac.2024.135593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
This study explored natural deep eutectic solvent-based polyphenolic extract from date fruit seed as a functional and bioactive compound in chitosan-poly(vinyl)alcohol (CSPVA) films. Various concentrations of the extract (1.5 %, 2 %, 2.5 %, and 3 %) were added to study the effect on the film's bioactive, physicochemical, mechanical and structural properties. The extract increased the total phenolic content (0.01 to 0.16 mg GAE/mL), and antioxidant activities determined via 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay (1.45 to 5.53 mmol GAE/mL), and ferric ion reducing antioxidant power assay (0.12 to 2.4 μmol TE/mL) assays. It also enhanced antibacterial activities against Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli. The extract was also successful in increasing the elongation at break (45.51 % to 58.16 %) and thickness (0.10 to 0.19 mm) while reducing tensile strength (11.18 MPa to 3.02 MPa) and Young's modulus (24.5 MPa to 5.7 MPa). UV-shielding ability, opacity, water vapor permeability (3.7 to 7.6 × 10-10 g/m.s.Pa) and solubility (53.7 % to 73.9 %) also increased. CSPVA films with 3 % DSP preserved white shrimps better than cling film by reducing quality deterioration (i.e., color, lipid oxidation, and bacterial population) after 4 days of refrigeration. These findings suggest that CSPVA films enriched with green-extracted date seed polyphenolic compounds hold significant potential for sustainable food packaging.
Collapse
Affiliation(s)
- Kehinde Ganiyat Lawal
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, Dubai, P.O. Box 20183, United Arab Emirates
| | | | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
4
|
Abou Hammad AB, Al-Esnawy AA, Mansour AM, El Nahrawy AM. Synthesis and characterization of chitosan-corn starch-SiO 2/silver eco-nanocomposites: Exploring optoelectronic and antibacterial potential. Int J Biol Macromol 2023; 249:126077. [PMID: 37532191 DOI: 10.1016/j.ijbiomac.2023.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
This work discusses the physicochemical and antimicrobial characteristics of chitosan-corn starch eco-nanocomposites integrated with silica@Ag nano-spheres. These composites were synthesized through sol-gel polymerization and subsequently exposed to simulated body fluid (SBF). The incorporation of Ag into the eco-nanocomposites led to a decrease in diffuse reflectance across the entire wavelength range. The dielectric permittivity exhibited an increase up to 52.1 at a frequency of 100 kHz, while the ac conductivity reached a value of 5.2 ∗ 10-6 (S cm-1) at the same frequency for the sample with the highest Ag content. The study utilized XRD and FTIR techniques to examine the materials before and after in vitro testing and evaluated the antibacterial properties of the eco-nanocomposites against several pathogenic microorganisms, including Staphylococcus haemolyticus, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli, using the agar diffusion method. The eco-nanocomposites demonstrated bioactivity by forming a hydroxy appetite layer on their surfaces and were capable of releasing silver (Ag) at concentrations of 1.3, 1.9, and 2.5 mol%. This study suggests that chitosan-corn starch-SiO2-based doped with Ag eco-nanocomposite has the potential for various applications, including biomedical and environmental fields, where their antibacterial properties can be utilized to combat harmful microorganisms.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - A A Al-Esnawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
5
|
Bellou MG, Patila M, Fotiadou R, Spyrou K, Yan F, Rudolf P, Gournis DP, Stamatis H. Tyrosinase Magnetic Cross-Linked Enzyme Aggregates: Biocatalytic Study in Deep Eutectic Solvent Aqueous Solutions. Biomolecules 2023; 13:biom13040643. [PMID: 37189390 DOI: 10.3390/biom13040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.
Collapse
Affiliation(s)
- Myrto G Bellou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios P Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Construction of chitosan-based supramolecular biofilm material for wound dressing based on natural deep eutectic solvents. Int J Biol Macromol 2023; 236:123768. [PMID: 36812964 DOI: 10.1016/j.ijbiomac.2023.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Bacterial infection is still one of the main problems observed in the clinical process of wound healing, so the development of new multifunctional biocompatible materials is an urgent clinical need. A kind of supramolecular biofilm crosslinked by hydrogen bond between natural deep eutectic solvent and chitosan was studied and successfully prepared to reduce bacterial infection. Its killing rates of Staphylococcus aureus and Escherichia coli can reach 98.86 % ± 1.90 % and 99.69 % ± 0.53 %, and it can be degraded in both soil and water, showing excellent biocompatibility and biodegradability. In addition, the supramolecular biofilm material also has the UV barrier property, which can effectively avoid the secondary injury of UV to the wound. Interestingly, the cross-linking effect of hydrogen bond makes the biofilm have a more compact structure and rough surface, and gives the biofilm strong tensile properties. Overall, owing to these unique advantages, NADES-CS supramolecular biofilm has great potential for medical applications, laying the foundation for the realization of sustainable polysaccharide materials.
Collapse
|
7
|
Yu J, Xu S, Goksen G, Yi C, Shao P. Chitosan films plasticized with choline-based deep eutectic solvents: UV shielding, antioxidant, and antibacterial properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
8
|
Tolmachev D, Nazarychev V, Fedotova V, Vorobiov V, Lukasheva N, Smirnov M, Karttunen M. Investigation of structure and properties of polymerizable deep eutectic solvent based on choline chloride and acrylic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Rizki IF, Panjaitan FR, Mulyono ME, Bajra BD. The utilization of natural deep eutectic solvent composition in tocotrienol and tocopherol extraction from crude palm oil and its acylglycerol products. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Rheological properties and 3D-printability of cellulose nanocrystals/deep eutectic solvent electroactive ion gels. Carbohydr Polym 2022; 290:119475. [DOI: 10.1016/j.carbpol.2022.119475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
|
11
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
|
13
|
Xie Q, Zheng X, Li L, Ma L, Zhao Q, Chang S, You L. Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules 2021; 26:2152. [PMID: 33918007 PMCID: PMC8068353 DOI: 10.3390/molecules26082152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
A pectin/chitosan matrix-loaded curcumin film (PCCF) with a deep eutectic solvent (DES) as the solvent and plasticizer was prepared in this study. Different quantities of curcumin (identified as PCCF-0, PCCF-1, PCCF-2. PCCF-3) were loaded on the pectin/chitosan film in order to evaluate their effects on the film properties. Results showed that curcumin could interact with the pectin/chitosan matrix and form a complex three-dimensional network structure. PCCF could promote the thickness, tensile strength, thermal properties, antioxidant and antiseptic capacities, but deteriorate the light transmission and elongation at the same time. The addition of curcumin would change the color of the film, without significantly affecting the moisture content. The tensile strength of PCCF-3 reached the maximum value of 3.75 MPa, while the elongation decreased to 10%. Meanwhile, the water-resistance properties of PCCF-3 were significantly promoted by 8.6% compared with that of PCCF-0. Furthermore, PCCF showed remarkable sustained antioxidant activities in a dose-dependent manner. PCCF-3 could inhibit DPPH and ABTS free radicals by 58.66% and 29.07%, respectively. It also showed antiseptic capacity on fresh pork during storage. Therefore, curcumin addition could improve the barrier, mechanical, antioxidant and antiseptic properties of the polysaccharide-based film and PCCF has the potential to be used as a new kind of food packaging material in the food industry.
Collapse
Affiliation(s)
- Qingtong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Xudong Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Liuting Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Liqun Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Qihui Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), South China University of Technology, Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.X.); (X.Z.); (L.L.); (L.M.); (Q.Z.)
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Abstract
In this study, bioactive composite systems based on natural polymers (chitosan and lignin) were prepared in this study. The structural, mechanical, and morphological properties of chitosan-based materials containing various amounts of lignin filler were investigated. The infra-red IR spectroscopy data confirmed the formation of chemical bonds between the components of the obtained composites. The mechanical properties of film samples were studied in air and in physiological solution. It was demonstrated that the breaking elongation values of the obtained film samples in the wet state were higher (150–160%) than the corresponding (average) value of a pure chitosan film (100%). The scanning electron microscopy and atomic force microscopy data demonstrated that the introduction of lignin had caused significant changes in the surface morphology of films. The appearance of a strongly pronounced texture and porosity facilitated cell proliferation on the surface of composites, i.e., the bioactivity of film samples was enhanced with an increasing lignin content in the chitosan matrix.
Collapse
|
15
|
Understanding Electrodeposition of Chitosan-Hydroxyapatite Structures for Regeneration of Tubular-Shaped Tissues and Organs. MATERIALS 2021; 14:ma14051288. [PMID: 33800345 PMCID: PMC7962832 DOI: 10.3390/ma14051288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/14/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
Tubular-shaped hydrogel structures were obtained in the process of cathodic electrodeposition from a chitosan-hydroxyapatite solution carried out in a cylindrical geometry. The impact of the initial concentration of solution components (i.e., chitosan, hydroxyapatite, and lactic acid) and process parameters (i.e., time and voltage) on the mass and structural properties of deposit was examined. Commercially available chitosan differs in average molecular weight and deacetylation degree; therefore, these parameters were also studied. The application of Fourier-transform infrared spectroscopy, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry allowed obtaining fundamental information about the type of bonds and interactions created in electrodeposited structures. Biocompatible tubular implants are highly desired in the field of regeneration or replacement of tubular-shaped tissues and organs; therefore, the possibility of obtaining deposits with the desired structural properties is highly anticipated.
Collapse
|
16
|
Samarov AA, Toikka MA, Toikka AM. Phase Equilibria in Alcohol–Ester Systems with Deep Eutectic Solvents Based on Choline Chloride at 293.15 and 313.15 K. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2021. [DOI: 10.1134/s004057952102010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jakubowska E, Gierszewska M, Nowaczyk J, Olewnik-Kruszkowska E. The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydr Polym 2020; 255:117527. [PMID: 33436259 DOI: 10.1016/j.carbpol.2020.117527] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/31/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
In this work deep eutectic solvent (DES), based on the mixture of choline chloride and lactic acid, were suggested as chitosan films plasticizers. The molecular structure and properties of films obtained using chitosan, with different degree of deacetylation and 0-80 wt.% DES content (ωDES), were studied by means of FTIR spectroscopy, SEM and AFM microscopy (films' surface properties) together with optical characteristics, water vapor transmission rate (WVTR), water vapor permeability (WVP), tensile strength (TS) and elongation at break (Eb). Scanning electron micrographs revealed that all chitosan-DES films were smooth and uniform. DES significantly improves the film flexibility (Eb increases of ca. 160 % after incorporation of 80 wt.% DES), slightly decreases tensile strength and also improves antioxidative properties while simultaneously, increasing water vapor permeability (WVP). Films prepared in this study exhibit characteristics that qualify them for potential use as an active packaging material.
Collapse
Affiliation(s)
- Ewelina Jakubowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Magdalena Gierszewska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Jacek Nowaczyk
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Ewa Olewnik-Kruszkowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|