1
|
Ahmed MS, Yun S, Kim HY, Ko S, Islam M, Nam KW. Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration. Gels 2025; 11:179. [PMID: 40136884 PMCID: PMC11942270 DOI: 10.3390/gels11030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels and microgels are emerging as pivotal platforms in biomedicine, with significant potential in targeted drug delivery, enhanced infection management, and tissue repair and regeneration. These gels, characterized by their high water content, unique structures, and adaptable mechanical properties, interact seamlessly with biological systems, making them invaluable for controlled and targeted drug release. In the realm of infection management, hydrogels and microgels can incorporate antimicrobial agents, offering robust defenses against bacterial infections. This capability is increasingly important in the fight against antibiotic resistance, providing innovative solutions for infection prevention in wound dressings, surgical implants, and medical devices. Additionally, the biocompatibility and customizable mechanical properties of these gels make them ideal scaffolds for tissue engineering, supporting the growth and repair of damaged tissues. Despite their promising applications, challenges such as ensuring long-term stability, enhancing therapeutic agent loading capacities, and scaling production must be addressed for widespread adoption. This review explores the current advancements, opportunities, and limitations of hydrogels and microgels, highlighting research and technological directions poised to revolutionize treatment strategies through personalized and regenerative approaches.
Collapse
Affiliation(s)
- Md. Shahriar Ahmed
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Sua Yun
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae-Yong Kim
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sunho Ko
- Department of Advanced Battery Convergence Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| | - Kyung-Wan Nam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea; (M.S.A.)
| |
Collapse
|
2
|
Hu Z, Zhang Y, Zhang J, Zheng R, Yang Y, Kong F, Li H, Yang X, Yang S, Kong X, Zhao R. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Regen Biomater 2024; 11:rbae125. [PMID: 39569077 PMCID: PMC11578599 DOI: 10.1093/rb/rbae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Biomineralization-based cell-material living composites ex vivo showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both in vitro and in vivo results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining in situ, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based ex vivo tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.
Collapse
Affiliation(s)
- Zhaofan Hu
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jingjing Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ran Zheng
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yang Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fei Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haoran Li
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xinyan Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 311399, PR China
| | - Shuhui Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou, Zhejiang 312451, PR China
| |
Collapse
|
3
|
Pasini C, Re F, Trenta F, Russo D, Sartore L. Gelatin-Based Scaffolds with Carrageenan and Chitosan for Soft Tissue Regeneration. Gels 2024; 10:426. [PMID: 39057449 PMCID: PMC11276450 DOI: 10.3390/gels10070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Motivated by the enormous potential of hydrogels in regenerative medicine, new biocompatible gelatin-based hybrid hydrogels were developed through a green process using poly(ethylene glycol) diglycidyl ether as a cross-linking agent, adding carrageenan and chitosan polysaccharides to the network to better mimic the hybrid composition of native extracellular matrix. Overall, the hydrogels show suitable structural stability, high porosity and pore interconnectivity, good swellability, and finally, biocompatibility. Their mechanical behavior, investigated by tensile and compression tests, appears to be characterized by nonlinear elasticity with high compliance values, fast stress-relaxation, and good strain reversibility with no sign of mechanical failure for compressive loading-unloading cycles at relatively high deformation levels of 50%. Degradation tests confirm the hydrogel bioresorbability by gradual hydrolysis, during which the structural integrity of both materials is maintained, while their mechanical behavior becomes more and more compliant. Human Umbilical Cord-derived Mesenchymal Stem Cells (hUC-MSCs) were used to test the hydrogels as potential carriers for cell delivery in tissue engineering. hUC-MSCs cultured inside the hydrogels show a homogenous distribution and maintain their growth and viability for at least 21 days of culture, with an increasing proliferation trend. Hence, this study contributes to a further understanding of the potential use of hybrid hydrogels and hUC-MSCs for a wide range of biomedical applications, particularly in soft tissue engineering.
Collapse
Affiliation(s)
- Chiara Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy;
| | - Federica Re
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
- Centro di Ricerca Emato-Oncologico AIL (CREA), “ASST-Spedali Civili” Hospital, 25123 Brescia, Italy
| | - Federica Trenta
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
- Centro di Ricerca Emato-Oncologico AIL (CREA), “ASST-Spedali Civili” Hospital, 25123 Brescia, Italy
| | - Domenico Russo
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
4
|
Schuphan J, Stojanović N, Lin YY, Buhl EM, Aveic S, Commandeur U, Schillberg S, Fischer H. A Combination of Flexible Modified Plant Virus Nanoparticles Enables Additive Effects Resulting in Improved Osteogenesis. Adv Healthc Mater 2024; 13:e2304243. [PMID: 38417028 DOI: 10.1002/adhm.202304243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Plant virus nanoparticles (VNPs) genetically engineered to present osteogenic cues provide a promising method for biofunctionalizing hydrogels in bone tissue engineering. Flexible Potato virus X (PVX) nanoparticles substantially enhance the attachment and differentiation of human mesenchymal stem cells (hMSCs) by presenting the RGD motif, hydroxyapatite-binding peptide (HABP), or consecutive polyglutamates (E8) in a concentration-dependent manner. Therefore, it is hypothesized that Tobacco mosaic virus nanoparticles, which present 1.6 times more functional peptides than PVX, will meliorate such an impact. This study hypothesizes that cultivating hMSCs on a surface coated with a combination of two VNPs presenting peptides for either cell attachment or mineralization can achieve additionally enhancing effects on osteogenesis. Calcium minerals deposited by differentiating hMSCs increases two to threefold for this combination, while the Alkaline Phosphatase activity of hMSCs grown on the PVX-RGD/PVX-HABP-coated surface significantly surpasses any other VNP combination. Superior additive effects are observed for the first time by employing a combination of VNPs with varying functionalities. It is found that the flexible VNP geometry plays a more critical role than the concentration of functional peptides. In conclusion, various peptide-presenting plant VNPs exhibit an additive enhancing effect offering significant potential for effectively functionalizing cell-containing hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Juliane Schuphan
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ying-Ying Lin
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Stefan Schillberg
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
5
|
Pasini C, Pandini S, Ramorino G, Sartore L. Tailoring the properties of composite scaffolds with a 3D-Printed lattice core and a bioactive hydrogel shell for tissue engineering. J Mech Behav Biomed Mater 2024; 150:106305. [PMID: 38096608 DOI: 10.1016/j.jmbbm.2023.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
The optimal performance of scaffolds for tissue engineering relies on a proper combination of their constituent biomaterials and on the design of their structure. In this work, composite scaffolds with a core-shell architecture are realized by grafting a gelatin-chitosan hydrogel onto a 3D-printed polylactic acid (PLA) core, aiming in particular at bone regeneration. This hydrogel was recently found to sustain osteogenic differentiation of mesenchymal stromal cells, leading to new bone tissue formation. Here, the integration with rigid PLA lattice structures provides improved mechanical support and finer control of strength and stiffness. The core is prepared by fused deposition modeling with the specific aim to study several lattice structures and thereby better tune the scaffold mechanical properties. In fact, the core architecture dictates the scaffold strength and stiffness, which are seen to match those of different types of bone tissue. For all lattice types, the hydrogel is found to penetrate throughout the entire core and to present highly interconnected pores for cell colonization. By varying the void volume fraction in the core it is possible to significantly change the bioactive shell content, as well as the mechanical properties, over a wide range of values. Looking for design guidelines, relationships between stiffness/strength and density are here outlined for scaffolds featuring different lattice parameters. Moreover, by acting on the core strut arrangement, scaffolds are reinforced along specific directions, as evaluated under compressive and bending loading conditions.
Collapse
Affiliation(s)
- C Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - S Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - G Ramorino
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - L Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| |
Collapse
|
6
|
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers (Basel) 2024; 16:367. [PMID: 38337256 DOI: 10.3390/polym16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.
Collapse
Affiliation(s)
- Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
7
|
Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int J Biol Macromol 2024; 254:127660. [PMID: 37907176 DOI: 10.1016/j.ijbiomac.2023.127660] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Regenerative medicine and tissue engineering have emerged as a multidisciplinary promising field in the quest to address the limitations of traditional medical approaches. One of the key aspects of these fields is the development of such types of biomaterials that can mimic the extracellular matrix and provide a conducive environment for tissue regeneration. In this regard, chitosan has played a vital role which is a naturally derived linear bi-poly-aminosaccharide, and has gained significant attention due to its biocompatibility and unique properties. Chitosan possesses many unique physicochemical properties, making it a significant polysaccharide for different applications such as agriculture, nutraceutical, biomedical, food, nutraceutical, packaging, etc. as well as significant material for developing next-generation hydrogel and bio-scaffolds for regenerative medicinal applications. Moreover, chitosan can be easily modified to incorporate desirable properties, such as improved mechanical strength, enhanced biodegradability, and controlled release of bioactive molecules. Blending chitosan with other polymers or incorporating nanoparticles into its matrix further expands its potential in tissue engineering applications. This review summarizes the most recent studies of the last 10 years based on chitosan, blends, and nanocomposites and their application in bone tissue engineering, hard tissue engineering, dental implants, dental tissue engineering, dental fillers, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shilpa Sharma
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shagufta Jabin
- Department of Chemistry, Faculty of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, India.
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile.
| |
Collapse
|
8
|
Pasini C, Pandini S, Re F, Ferroni M, Borsani E, Russo D, Sartore L. New Poly(lactic acid)-Hydrogel Core-Shell Scaffolds Highly Support MSCs' Viability, Proliferation and Osteogenic Differentiation. Polymers (Basel) 2023; 15:4631. [PMID: 38139883 PMCID: PMC10747776 DOI: 10.3390/polym15244631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Scaffolds for tissue engineering are expected to respond to a challenging combination of physical and mechanical requirements, guiding the research towards the development of novel hybrid materials. This study introduces innovative three-dimensional bioresorbable scaffolds, in which a stiff poly(lactic acid) lattice structure is meant to ensure temporary mechanical support, while a bioactive gelatin-chitosan hydrogel is incorporated to provide a better environment for cell adhesion and proliferation. The scaffolds present a core-shell structure, in which the lattice core is realized by additive manufacturing, while the shell is nested throughout the core by grafting and crosslinking a hydrogel forming solution. After subsequent freeze-drying, the hydrogel network forms a highly interconnected porous structure that completely envelops the poly(lactic acid) core. Thanks to this strategy, it is easy to tailor the scaffold properties for a specific target application by properly designing the lattice geometry and the core/shell ratio, which are found to significantly affect the scaffold mechanical performance and its bioresorption. Scaffolds with a higher core/shell ratio exhibit higher mechanical properties, whereas reducing the core/shell ratio results in higher values of bioactive hydrogel content. Hydrogel contents up to 25 wt% could be achieved while maintaining high compression stiffness (>200 MPa) and strength (>5 MPa), overall, within the range of values displayed by human bone tissue. In addition, mechanical properties remain stable after prolonged immersion in water at body temperature for several weeks. On the other hand, the hydrogel undergoes gradual and homogeneous degradation over time, but the core-shell integrity and structural stability are nevertheless maintained during at least 7-week hydrolytic degradation tests. In vitro experiments with human mesenchymal stromal cells reveal that the core-shell scaffolds are biocompatible, and their physical-mechanical properties and architecture are suitable to support cell growth and osteogenic differentiation, as demonstrated by hydroxyapatite formation. These results suggest that the bioresorbable core-shell scaffolds can be considered and further studied, in view of clinically relevant endpoints in bone regenerative medicine.
Collapse
Affiliation(s)
- Chiara Pasini
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| | - Stefano Pandini
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| | - Federica Re
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy;
- National Research Council (CNR)—Institute for Microelectronics and Microsystems, Bologna, Via Gobetti, 101, 40129 Bologna, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Domenico Russo
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Luciana Sartore
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| |
Collapse
|
9
|
Tymetska S, Shymborska Y, Stetsyshyn Y, Budkowski A, Bernasik A, Awsiuk K, Donchak V, Raczkowska J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM- co-HEMA) and P(OEGMA- co-HEMA) Brushes for Regenerative Medicine. ACS Biomater Sci Eng 2023; 9:6256-6272. [PMID: 37874897 PMCID: PMC10646826 DOI: 10.1021/acsbiomaterials.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.
Collapse
Affiliation(s)
- Svitlana Tymetska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Yana Shymborska
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Yurij Stetsyshyn
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Andrzej Budkowski
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty
of Physics and Applied Computer Science, AGH - University of Science and Technology, al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Kamil Awsiuk
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Volodymyr Donchak
- Lviv
Polytechnic National University, St. George’s Square 2, 79013 Lviv, Ukraine
| | - Joanna Raczkowska
- Jagiellonian
University, Faculty of Physics, Astronomy
and Applied Computer Science, Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
10
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
12
|
Lin YH, Liu EW, Lin YJ, Ng HY, Lee JJ, Hsu TT. The Synergistic Effect of Electrical Stimulation and Dermal Fibroblast Cells-Laden 3D Conductive Hydrogel for Full-Thickness Wound Healing. Int J Mol Sci 2023; 24:11698. [PMID: 37511457 PMCID: PMC10380226 DOI: 10.3390/ijms241411698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Clinically, most patients with poor wound healing suffer from generalized skin damage, usually accompanied by other complications, so developing therapeutic strategies for difficult wound healing has remained extremely challenging until now. Current studies have indicated that electrical stimulation (ES) to cutaneous lesions enhances skin regeneration by activating intracellular signaling cascades and secreting skin regeneration-related cytokine. In this study, we designed different concentrations of graphene in gelatin-methacrylate (GelMa) to form the conductive composite commonly used in wound healing because of its efficiency compared to other conductive thermo-elastic materials. The results demonstrated the successful addition of graphene to GelMa while retaining the original physicochemical properties of the GelMa bioink. In addition, the incorporation of graphene increased the interactions between these two biomaterials, leading to an increase in mechanical properties, improvement in the swelling ratio, and the regulation of degradation characteristics of the biocomposite scaffolds. Moreover, the scaffolds exhibited excellent electrical conductivity, increasing proliferation and wound healing-related growth factor secretion from human dermal fibroblasts. Overall, the HDF-laden 3D electroconductive GelMa/graphene-based hydrogels developed in this study are ideal biomaterials for skin regeneration applications in the future.
Collapse
Affiliation(s)
- Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Yun-Jhen Lin
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Hooi Yee Ng
- Department of Family Medicine, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 404332, Taiwan
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Tuan-Ti Hsu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| |
Collapse
|
13
|
Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, Pathania D. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: A review. Int J Biol Macromol 2023; 242:124875. [PMID: 37196726 DOI: 10.1016/j.ijbiomac.2023.124875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Biological macromolecules have been significantly used in the medicine due to their certain therapeutic values. Macromolecules have been employed in medical filed in order to enhance, support, and substitute damaged tissues or any other biological function. In the past decade, the biomaterial field has developed considerably because of vast innovations in regenerative medicine, tissue engineering, etc. Different types of biological macromolecules such as natural protein and polysaccharide etc. and synthetic molecules such as metal based, polymer based, and ceramic based etc. have been discussed. These materials can be modified by coatings, fibres, machine parts, films, foams, and fabrics for utilization in biomedical products and other environmental applications. At present, the biological macromolecules can used in different areas like medicine, biology, physics, chemistry, tissue engineering, and materials science. These materials have been used to promote the healing of human tissues, medical implants, bio-sensors and drug delivery, etc. These materials also considered as environmentally sustainable as they are prepared in association with renewable natural resources and living organisms in contrast to non-renewable resources (petrochemicals). In addition, enhanced compatibility, durability and circular economy of biological materials make them highly attractive and innovative for current research.The present review paper summarizes a brief about biological macromolecules, their classification, methods of synthesis, and their role in biomedicine, dyes and herbal products.
Collapse
Affiliation(s)
- Manita Thakur
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Manisha Chandel
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Chemistry, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, (HP) 175001, India
| | - Pawan Kumar
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla 171013, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla (RahyaSuchani), Jammu 181143, India.
| |
Collapse
|
14
|
González-García DM, Rodríguez-Lorenzo LM, Marcos-Fernández Á, Jiménez-Gallegos R, Sánchez-Téllez DA, Téllez-Jurado L. Tailoring/Tuning Properties of Polyester Urea-Urethanes through Hybridization with Titania Obtained Using the Sol-Gel Process. Polymers (Basel) 2023; 15:polym15102299. [PMID: 37242875 DOI: 10.3390/polym15102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Hybrid materials have been studied because in these materials the properties of organic components, such as elasticity and biodegradability, could be combined with the properties of inorganic components, such as good biological response, thereby transforming them into a single material with improved properties. In this work, Class I hybrid materials based on polyester-urea-urethanes and titania were obtained using the modified sol-gel method. This was corroborated using the FT-IR and Raman techniques which highlighted the formation of hydrogen bonds and the presence of Ti-OH groups in the hybrid materials. In addition, the mechanical and thermal properties and degradability were measured using techniques, such as Vickers hardness, TGA, DSC, and hydrolytic degradation; these properties could be tailored according to hybridization between both organic and inorganic components. The results show that Vickers hardness increased by 20% in hybrid materials as compared to polymers; also, the surface hydrophilicity increases in the hybrid materials, improving their cell viability. Furthermore, cytotoxicity in vitro test was carried out using osteoblast cells for intended biomedical applications and they showed non-cytotoxic behavior.
Collapse
Affiliation(s)
- Dulce María González-García
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | | | - Ángel Marcos-Fernández
- Institute of Polymer Science and Technology (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Rodrigo Jiménez-Gallegos
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Daniela Anahí Sánchez-Téllez
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Lucía Téllez-Jurado
- Department of Metallurgy and Materials Engineering, ESIQIE, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
15
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Plug-and-Play Lymph Node-on-Chip: Secondary Tumor Modeling by the Combination of Cell Spheroid, Collagen Sponge and T-Cells. Int J Mol Sci 2023; 24:ijms24043183. [PMID: 36834594 PMCID: PMC9966643 DOI: 10.3390/ijms24043183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue. This collagen sponge has a morphology and porosity comparable to that of a native human LN. To demonstrate the suitability of the obtained chip for pharmacological applications, we used it to evaluate the effect of contrast agent/drug carrier size, on the penetration and accumulation of particles in 3D spheroids modeling secondary tumor. For this, the 0.3, 0.5 and 4 μm bovine serum albumin (BSA)/tannic acid (TA) capsules were mixed with lymphocytes and pumped through the developed chip. The capsule penetration was examined by scanning with fluorescence microscopy followed by quantitative image analysis. The results show that capsules with a size of 0.3 μm passed more easily to the tumor spheroid and penetrated inside. We hope that the device will represent a reliable alternative to in vivo early secondary tumor models and decrease the amount of in vivo experiments in the frame of preclinical study.
Collapse
|
17
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
18
|
Baldina AA, Pershina LV, Noskova UV, Nikitina AA, Muravev AA, Skorb EV, Nikolaev KG. Uricase Crowding via Polyelectrolyte Layers Coacervation for Carbon Fiber-Based Electrochemical Detection of Uric Acid. Polymers (Basel) 2022; 14:5145. [PMID: 36501541 PMCID: PMC9739113 DOI: 10.3390/polym14235145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Urate oxidase (UOx) surrounded by synthetic macromolecules, such as polyethyleneimine (PEI), poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) is a convenient model of redox-active biomacromolecules in a crowded environment and could display high enzymatic activity towards uric acid, an important marker of COVID-19 patients. In this work, the carbon fiber electrode was modified with Prussian blue (PB) redox mediator, UOx layer, and a layer-by-layer assembled polyelectrolyte film, which forms a complex coacervate consisting of a weakly charged polyelectrolyte (PEI or PAH) and a highly charged one (PSS). The film deposition process was controlled by cyclic voltammetry and scanning electron microscopy coupled with energy-dispersive X-ray analysis (at the stage of PB deposition) and through quartz crystal microbalance technique (at latter stages) revealed uniform distribution of the polyelectrolyte layers. Variation of the polyelectrolyte film composition derived the following statements. (1) There is a linear correlation between electrochemical signal and concentration of uric acid in the range of 10-4-10-6 M. (2) An increase in the number of polyelectrolyte layers provides more reproducible values for uric acid concentration in real urine samples of SARS-CoV-2 patients measured by electrochemical enzyme assay, which are comparable to those of spectrophotometric assay. (3) The PAH/UOx/PSS/(PAH/PSS)2-coated carbon fiber electrode displays the highest sensitivity towards uric acid. (4) There is a high enzyme activity of UOx immobilized into the hydrogel nanolayer (values of the Michaelis-Menten constant are up to 2 μM) and, consequently, high affinity to uric acid.
Collapse
Affiliation(s)
| | | | | | | | | | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia
| | | |
Collapse
|
19
|
Lee JJ, Ng HY, Lin YH, Liu EW, Lin TJ, Chiu HT, Ho XR, Yang HA, Shie MY. The 3D printed conductive grooved topography hydrogel combined with electrical stimulation for synergistically enhancing wound healing of dermal fibroblast cells. BIOMATERIALS ADVANCES 2022; 142:213132. [PMID: 36215748 DOI: 10.1016/j.bioadv.2022.213132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Patients with extensive cutaneous damage resulting from poor wound healing often have other comorbidities such as diabetes that may lead to impaired skin functions and scar formation. Many recent studies have shown that the application of electrical stimulation (ES) to cutaneous lesions significantly improves skin regeneration via activation of AKT intracellular signaling cascades and secretion of regeneration-related growth factors. In this study, we fabricated varying concentrations of gelatin-methacrylate (GelMa) hydrogels with poly(3,4-ethylenedioxythiophene) (PEDOT): polystyrene sulfonate (PSS), which is a conductive material commonly used in tissue engineering due to its efficiency among conductive thermo-elastic materials. The results showed successful modification of PEDOT:PSS with GelMa while retaining the original structural characteristics of the GelMa hydrogels. In addition, the incorporation of PEDOT:PSS increased the interactions between both the materials, thus leading to enhanced mechanical strength, improved swelling ratio, and decreased hydrophilicity of the scaffolds. Our GelMa/PEDOT:PSS scaffolds were designed to have micro-grooves on the surfaces of the scaffolds for the purpose of directional guiding. In addition, our scaffolds were shown to have excellent electrical conductivity, thus leading to enhanced cellular proliferation and directional migration and orientation of human dermal fibroblasts. In vivo studies revealed that the GelMa/PEDOT:PSS scaffolds with electrical stimulation were able to induce full skin thickness regeneration, as seen from the various stainings. These results indicate the potential of GelMa/PEDOT:PSS as an electro-conductive biomaterial for future skin regeneration applications.
Collapse
Affiliation(s)
- Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 406040, Taiwan; Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Hooi Yee Ng
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yen-Hong Lin
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Ting-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Hsiang-Ting Chiu
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Xin-Rong Ho
- School of Medicine, China Medical University, Taichung City 406040, Taiwan
| | - Hsi-An Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 406040, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
20
|
Montazerian M, Gonçalves GVS, Barreto MEV, Lima EPN, Cerqueira GRC, Sousa JA, Malek Khachatourian A, Souza MKS, Silva SML, Fook MVL, Baino F. Radiopaque Crystalline, Non-Crystalline and Nanostructured Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7477. [PMID: 36363085 PMCID: PMC9656675 DOI: 10.3390/ma15217477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for various biomedical setups. The present work aims to provide an overview of radiopaque bioceramics, specifically crystalline, non-crystalline (glassy), and nanostructured bioceramics designed for applications in orthopedics, dentistry, and cancer therapy. Furthermore, the modification of the chemical, physical, and biological properties of parent ceramics/biopolymers due to the addition of radiopacifiers is critically discussed. We also point out future research lacunas in this exciting field that bioceramists can explore further.
Collapse
Affiliation(s)
- Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Geovanna V. S. Gonçalves
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Eunice P. N. Lima
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Glauber R. C. Cerqueira
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Julyana A. Sousa
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adrine Malek Khachatourian
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
| | - Mairly K. S. Souza
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Suédina M. L. Silva
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
21
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
22
|
Mohgan R, Candasamy M, Mayuren J, Singh SK, Gupta G, Dua K, Chellappan DK. Emerging Paradigms in Bioengineering the Lungs. Bioengineering (Basel) 2022; 9:bioengineering9050195. [PMID: 35621473 PMCID: PMC9137616 DOI: 10.3390/bioengineering9050195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
In end-stage lung diseases, the shortage of donor lungs for transplantation and long waiting lists are the main culprits in the significantly increasing number of patient deaths. New strategies to curb this issue are being developed with the help of recent advancements in bioengineering technology, with the generation of lung scaffolds as a steppingstone. There are various types of lung scaffolds, namely, acellular scaffolds that are developed via decellularization and recellularization techniques, artificial scaffolds that are synthesized using synthetic, biodegradable, and low immunogenic materials, and hybrid scaffolds which combine the advantageous properties of materials in the development of a desirable lung scaffold. There have also been advances in the design of bioreactors in terms of providing an optimal regenerative environment for the maturation of functional lung tissue over time. In this review, the emerging paradigms in the field of lung tissue bioengineering will be discussed.
Collapse
Affiliation(s)
- Raxshanaa Mohgan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
23
|
Hybrid Core-Shell Polymer Scaffold for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23094533. [PMID: 35562923 PMCID: PMC9101363 DOI: 10.3390/ijms23094533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
A great promise for tissue engineering is represented by scaffolds that host stem cells during proliferation and differentiation and simultaneously replace damaged tissue while maintaining the main vital functions. In this paper, a novel process was adopted to develop composite scaffolds with a core-shell structure for bone tissue regeneration, in which the core has the main function of temporary mechanical support, and the shell enhances biocompatibility and provides bioactive properties. An interconnected porous core was safely obtained, avoiding solvents or other chemical issues, by blending poly(lactic acid), poly(ε-caprolactone) and leachable superabsorbent polymer particles. After particle leaching in water, the core was grafted with a gelatin/chitosan hydrogel shell to create a cell-friendly bioactive environment within its pores. The physicochemical, morphological, and mechanical characterization of the hybrid structure and of its component materials was carried out by means of infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and mechanical testing under different loading conditions. These hybrid polymer devices were found to closely mimic both the morphology and the stiffness of bones. In addition, in vitro studies showed that the core-shell scaffolds are efficiently seeded by human mesenchymal stromal cells, which remain viable, proliferate, and are capable of differentiating towards the osteogenic phenotype if adequately stimulated.
Collapse
|
24
|
Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022; 10:817391. [PMID: 35145958 PMCID: PMC8822157 DOI: 10.3389/fbioe.2022.817391] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue repair after trauma and infection has always been a difficult problem in regenerative medicine. Hydrogels have become one of the most important scaffolds for tissue engineering due to their biocompatibility, biodegradability and water solubility. Especially, the stiffness of hydrogels is a key factor, which influence the morphology of mesenchymal stem cells (MSCs) and their differentiation. The researches on this point are meaningful to the field of tissue engineering. Herein, this review focus on the design of hydrogels with different stiffness and their effects on the behavior of MSCs. In addition, the effect of hydrogel stiffness on the phenotype of macrophages is introduced, and then the relationship between the phenotype changes of macrophages on inflammatory response and tissue repair is discussed. Finally, the future application of hydrogels with a certain stiffness in regenerative medicine and tissue engineering has been prospected.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lengjing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yating Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jinfeng Liao,
| |
Collapse
|
25
|
Surface Functionalization of Poly(l-lactide-co-glycolide) Membranes with RGD-Grafted Poly(2-oxazoline) for Periodontal Tissue Engineering. J Funct Biomater 2022; 13:jfb13010004. [PMID: 35076515 PMCID: PMC8788533 DOI: 10.3390/jfb13010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering.
Collapse
|
26
|
Iqbal S, Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int J Pharm 2022; 611:121289. [PMID: 34775041 DOI: 10.1016/j.ijpharm.2021.121289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The unique properties of polymers have performed an essential contribution to the drug delivery system by providing an outstanding platform for the delivery of macromolecules and genes. However, the block copolymers have been the subject of many recently published works whose results have demonstrated excellent performance in drug targeting. Poly(β-amino esters) (PβAEs) copolymers are the synthetic cationic polymers that are tailored by chemically joining PβAEs with other additives to demonstrate extraordinary efficiency in designing pre-defined and pre-programmed nanostructures, site-specific delivery, andovercoming the distinct cellular barriers. Different compositional and structural libraries could be generated by combinatorial chemistry and by the addition of various novel functional additives that fulfill the multiple requirements of targeted delivery. These intriguing attributes allow PβAE-copolymers to have customized therapeutic functions such as excellent encapsulation capacity, high stability, and stimuli-responsive release. Here, we give an overview of PβAE copolymers-based formulations along with focusing on most notable improvements such as structural modifications, bio-conjugations, and stimuli-responsive approaches, for safe and effective nucleic acids delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
27
|
Vitamin D 3/vitamin K 2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway. Int J Biol Macromol 2021; 190:244-258. [PMID: 34492244 DOI: 10.1016/j.ijbiomac.2021.08.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Vitamin D3, vitamin K2, and Mg (10%, 1.25%, and 5%, w/w, respectively)-loaded PLA (12%, w/v) (TCP (5%, w/v))/PCL (12%, w/v) 1:1 (v/v) composite nanofibers (DKMF) were produced by electrospinning method (ES) and their osteoinductive effects were investigated in cell culture test. Neither pure nanofibers nor DKMF caused a significant cytotoxic effect in fibroblasts. The induction of the stem cell differentiation into osteogenic cells was observed in the cell culture with both DKMF and pure nanofibers, separately. Vitamin D3, vitamin K2, and magnesium demonstrated to support the osteogenic differentiation of mesenchymal stem cells by expressing Runx2, BMP2, and osteopontin and suppressing PPAR-γ and Sox9. Therefore, the Wnt/β-catenin signaling pathway was activated by DKMF. DKMF promoted large axonal sprouting and needle-like elongation of osteoblast cells and enhanced cellular functions such as migration, infiltration, proliferation, and differentiation after seven days of incubation using confocal laser scanning microscopy. The results showed that DKMF demonstrated sustained drug release for 144 h, tougher and stronger structure, higher tensile strength, increased water up-take capacity, decreased degradation ratio, and slightly lower Tm and Tg values compared to pure nanofibers. Consequently, DKMF is a promising treatment approach in bone tissue engineering due to its osteoinductive effects.
Collapse
|
28
|
Sovova S, Abalymov A, Pekar M, Skirtach AG, Parakhonskiy B. Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. J Mater Chem B 2021; 9:8308-8320. [PMID: 34518864 DOI: 10.1039/d1tb01072g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate. We show that calcium carbonate particles can be synthesized in large quantities, i.e., in gram quantities, which is a substantial advantage over previously reported synthesis methods. We demonstrated that the presence of vaterite particles can dramatically stimulate hydroxyapatite (HA) production by providing the continued release of the main HA component - calcium ions - depending on the following particle parameters: size, shape, and phase. To understand the key parameters influencing the efficiency of HA production by cells, we created a predictive model by means of principal component analysis. We found that smaller particles in the vaterite state are best suited for HA growth (HA growth was 8 times greater than that in the control). We also found that the reported dependence of cell adhesion on colloidal particles can be extended to other types of particles that contain calcium ions.
Collapse
Affiliation(s)
- Sarka Sovova
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Anatolii Abalymov
- Science Medical Center, Saratov State University, Saratov 410012, Russian Federation.,Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Miloslav Pekar
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Andre G Skirtach
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Chang CW, Yeh YC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromol Biosci 2021; 21:e2100248. [PMID: 34514730 DOI: 10.1002/mabi.202100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Indexed: 01/05/2023]
Abstract
Synthetic polymers have been widely employed to prepare hydrogels for biomedical applications, such as cell culture, drug delivery, and tissue engineering. However, the activity of cells cultured in the synthetic polymer-based hydrogels faces the challenges of limited cell proliferation and spreading compared to cells cultured in natural polymer-based hydrogels. To address this concern, a hybrid hydrogel strategy is demonstrated by incorporating thiolated gelatin (GS) into the norbornene-functionalized poly (glycerol sebacate)-co-polyethylene glycol (Nor_PGS-co-PEG, NPP) network to prepare highly biocompatible NPP/GS_UV hydrogels after the thiol-ene photo-crosslinking reaction. The GS introduces several desirable features (i.e., enhanced water content, enlarged pore size, increased mechanical property, and more cell adhesion sites) to the NPP/GS_UV hydrogels, facilitating the cell proliferation and spreading inside the network. Thus, the highly biocompatible NPP/GS_UV hydrogels are promising materials for cell encapsulation and tissue engineering applications. Taken together, the hybrid hydrogel strategy is demonstrated as a powerful approach to fabricate hydrogels with a highly friendly environment for cell culture, expanding the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
30
|
Bilge S, Ergene E, Talak E, Gokyer S, Donar YO, Sınağ A, Yilgor Huri P. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:73. [PMID: 34152502 PMCID: PMC8217022 DOI: 10.1007/s10856-021-06534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 05/03/2023]
Abstract
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Selva Bilge
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Ebru Talak
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Yusuf Osman Donar
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Ali Sınağ
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey.
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey.
| |
Collapse
|
31
|
Magli S, Rossi L, Consentino C, Bertini S, Nicotra F, Russo L. Combined Analytical Approaches to Standardize and Characterize Biomaterials Formulations: Application to Chitosan-Gelatin Cross-Linked Hydrogels. Biomolecules 2021; 11:biom11050683. [PMID: 34062918 PMCID: PMC8147276 DOI: 10.3390/biom11050683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
A protocol based on the combination of different analytical methodologies is proposed to standardize the experimental conditions for reproducible formulations of hybrid hydrogels. The final hybrid material, based on the combination of gelatin and chitosan functionalized with methylfuran and cross-linked with 4-arm-PEG-maleimide, is able to mimic role, dynamism, and structural complexity of the extracellular matrix. Physical-chemical properties of starting polymers and finals constructs were characterized exploiting the combination of HP-SEC-TDA, UV, FT-IR, NMR, and TGA.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lorenzo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cesare Consentino
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Correspondence: ; Tel.: +39-0264483462
| |
Collapse
|
32
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021; 9:2804-2824. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful. In the past few decades, biomaterials have gained prominence in the field of tissue engineering, in view of their major role in the regenerative process. Here we describe the effect of SARS-CoV-2 on multiple tissues/organs, and provide evidence for the positive role of biomaterials in aiding tissue repair. These findings are further extrapolated to explore their prospects as a therapeutic platform to address the tissue/organ damage that is frequently observed during this viral outbreak. This study suggests that the biomaterial-based approach could be an effective strategy for regenerating tissues/organs damaged by SARS-CoV-2.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Rupali Singh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| | - Deepa Ghosh
- Department of Biological Science, Institute of Nanoscience and Technology (INST), Habitat Centre, Sector 64, Phase 10, Mohali-160062, Punjab, India.
| |
Collapse
|
34
|
Allen KB, Adams JD, Badylak SF, Garrett HE, Mouawad NJ, Oweida SW, Parikshak M, Sultan PK. Extracellular Matrix Patches for Endarterectomy Repair. Front Cardiovasc Med 2021; 8:631750. [PMID: 33644135 PMCID: PMC7904872 DOI: 10.3389/fcvm.2021.631750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Patch repair is the preferred method for arteriotomy closure following femoral or carotid endarterectomy. Choosing among available patch options remains a clinical challenge, as current evidence suggests roughly comparable outcomes between autologous grafts and synthetic and biologic materials. Biologic patches have potential advantages over other materials, including reduced risk for infection, mitigation of an excessive foreign body response, and the potential to remodel into healthy, vascularized tissue. Here we review the use of decellularized extracellular matrix (ECM) for cardiovascular applications, particularly endarterectomy repair, and the capacity of these materials to remodel into native, site-appropriate tissues. Also presented are data from two post-market observational studies of patients undergoing iliofemoral and carotid endarterectomy patch repair as well as one histologic case report in a challenging iliofemoral endarterectomy repair, all with the use of small intestine submucosa (SIS)-ECM. In alignment with previously reported studies, high patency was maintained, and adverse event rates were comparable to previously reported rates of patch angioplasty. Histologic analysis from one case identified constructive remodeling of the SIS-ECM, consistent with the histologic characteristics of the endarterectomized vessel. These clinical and histologic results align with the biologic potential described in the academic ECM literature. To our knowledge, this is the first histologic demonstration of SIS-ECM remodeling into site-appropriate vascular tissues following endarterectomy. Together, these findings support the safety and efficacy of SIS-ECM for patch repair of femoral and carotid arteriotomy.
Collapse
Affiliation(s)
- Keith B Allen
- St. Luke's Hospital of Kansas City, St. Luke's Mid America Heart Institute, Kansas City, MO, United States
| | - Joshua D Adams
- Carilion Clinic Aortic and Endovascular Surgery, Roanoke, VA, United States
| | - Stephen F Badylak
- Department of Bioengineering, Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - H Edward Garrett
- Cardiovascular Surgery Clinic, University of Tennessee, Memphis, Memphis, TN, United States
| | | | | | | | | |
Collapse
|
35
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
36
|
Lin FS, Lee JJ, Lee AKX, Ho CC, Liu YT, Shie MY. Calcium Silicate-Activated Gelatin Methacrylate Hydrogel for Accelerating Human Dermal Fibroblast Proliferation and Differentiation. Polymers (Basel) 2020; 13:E70. [PMID: 33375390 PMCID: PMC7795131 DOI: 10.3390/polym13010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a complex process that requires specific interactions between multiple cells such as fibroblasts, mesenchymal, endothelial, and neural stem cells. Recent studies have shown that calcium silicate (CS)-based biomaterials can enhance the secretion of growth factors from fibroblasts, which further increased wound healing and skin regeneration. In addition, gelatin methacrylate (GelMa) is a compatible biomaterial that is commonly used in tissue engineering. However, it has low mechanical properties, thus restricting its fullest potential for clinical applications. In this study, we infused Si ions into GelMa hydrogel and assessed for its feasibility for skin regeneration applications by observing for its influences on human dermal fibroblasts (hDF). Initial studies showed that Si could be successfully incorporated into GelMa, and printability was not affected. The degradability of Si-GelMa was approximately 20% slower than GelMa hydrogels, thus allowing for better wound healing and regeneration. Furthermore, Si-GelMa enhanced cellular adhesion and proliferation, therefore leading to the increased secretion of collagen I other important extracellular matrix (ECM) remodeling-related proteins including Ki67, MMP9, and decorin. This study showed that the Si-GelMa hydrogels were able to enhance the activity of hDF due to the gradual release of Si ions, thus making it a potential candidate for future skin regeneration clinical applications.
Collapse
Affiliation(s)
- Fong-Sian Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (F.-S.L.); (A.K.-X.L.); (Y.-T.L.)
| | - Jian-Jr Lee
- School of Medicine, China Medical University, Taichung City 40447, Taiwan;
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Alvin Kai-Xing Lee
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (F.-S.L.); (A.K.-X.L.); (Y.-T.L.)
- School of Medicine, China Medical University, Taichung City 40447, Taiwan;
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan;
- 3D Printing Medical Research Institute, Asia University, Taichung City 41354, Taiwan
| | - Yen-Ting Liu
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (F.-S.L.); (A.K.-X.L.); (Y.-T.L.)
- School of Medicine, China Medical University, Taichung City 40447, Taiwan;
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 40447, Taiwan; (F.-S.L.); (A.K.-X.L.); (Y.-T.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan;
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan
| |
Collapse
|
37
|
Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020; 12:E2858. [PMID: 33260490 PMCID: PMC7760052 DOI: 10.3390/polym12122858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
In this article, recent advances in the development, preparation, biocompatibility and mechanical properties of polyetheretherketone (PEEK) and its composites for hard and soft tissue engineering are reviewed. PEEK has been widely employed for fabricating spinal fusions due to its radiolucency, chemical stability and superior sterilization resistance at high temperatures. PEEK can also be tailored into patient-specific implants for treating orbital and craniofacial defects in combination with additive manufacturing process. However, PEEK is bioinert, lacking osseointegration after implantation. Accordingly, several approaches including surface roughening, thin film coating technology, and addition of bioactive hydroxyapatite (HA) micro-/nanofillers have been adopted to improve osseointegration performance. The elastic modulus of PEEK is 3.7-4.0 GPa, being considerably lower than that of human cortical bone ranging from 7-30 GPa. Thus, PEEK is not stiff enough to sustain applied stress in load-bearing orthopedic implants. Therefore, HA micro-/nanofillers, continuous and discontinuous carbon fibers are incorporated into PEEK for enhancing its stiffness for load-bearing applications. Among these, carbon fibers are more effective than HA micro-/nanofillers in providing additional stiffness and load-bearing capabilities. In particular, the tensile properties of PEEK composite with 30wt% short carbon fibers resemble those of cortical bone. Hydrophobic PEEK shows no degradation behavior, thus hampering its use for making porous bone scaffolds. PEEK can be blended with hydrophilic polymers such as polyglycolic acid and polyvinyl alcohol to produce biodegradable scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|
39
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
40
|
Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
42
|
Abalymov A, Van der Meeren L, Skirtach AG, Parakhonskiy BV. Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38862-38872. [PMID: 32539334 DOI: 10.1021/acsami.0c06641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing materials for tissue engineering and studying the mechanisms of cell adhesion is a complex and multifactor process that needs analysis using physical chemistry and biology. The major challenge is the labor-intensive data mining as well as requirements of the number of advanced techniques. For example, hydrogel-based biomaterials with cell-binding sites, tunable mechanical properties, and complex architectures have emerged as a powerful tool to control cell adhesion and proliferation for tissue engineering. Composite hydrogels could be used for bone tissue regeneration, but they exhibit poor ossification properties. In current work, we have designed new osteoinductive gellan gum hydrogels by a thermal annealing approach and consequently functionalized them with Ca/Mg carbonate submicron particles. Determination of key parameters, which influence a successful hydroxyapatite generation, was done via the principal component analysis of 18 parameters (Young's modulus of the hydrogel and particles, particle size, and mass) and cell behavior at various time points (like viability, numbers of the cells, rate of alkaline phosphatase production, and cells area) obtained by characterizing such composite hydrogel. It is determined that the particles size and concentration of calcium ions have a dominant effect on the hydroxyapatite formation, because of providing local areas with a high Young's modulus in a hydrogel, a desirable property for cell adhesion. The detailed analysis presented here allows identifying hydrogels for cell growth applications, while on the other hand, material properties can be predicted, and their overall number can be minimized leading to efficient optimization of bone reconstruction and other cell growth applications.
Collapse
Affiliation(s)
| | | | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | | |
Collapse
|
43
|
Nie K, Han S, Yang J, Sun Q, Wang X, Li X, Li Q. Enzyme-Crosslinked Electrospun Fibrous Gelatin Hydrogel for Potential Soft Tissue Engineering. Polymers (Basel) 2020; 12:E1977. [PMID: 32878113 PMCID: PMC7564616 DOI: 10.3390/polym12091977] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Soft tissue engineering has been seeking ways to mimic the natural extracellular microenvironment that allows cells to migrate and proliferate to regenerate new tissue. Therefore, the reconstruction of soft tissue requires a scaffold possessing the extracellular matrix (ECM)-mimicking fibrous structure and elastic property, which affect the cell functions and tissue regeneration. Herein, an effective method for fabricating nanofibrous hydrogel for soft tissue engineering is demonstrated using gelatin-hydroxyphenylpropionic acid (Gel-HPA) by electrospinning and enzymatic crosslinking. Gel-HPA fibrous hydrogel was prepared by crosslinking the electrospun fibers in ethanol-water solution with an optimized concentration of horseradish peroxidase (HRP) and H2O2. The prepared fibrous hydrogel held the soft and elastic mechanical property of hydrogels and the three-dimensional (3D) fibrous structure of electrospun fibers. It was proven that the hydrogel scaffolds were biocompatible, improving the cellular adhesion, spreading, and proliferation. Moreover, the fibrous hydrogel showed rapid biodegradability and promoted angiogenesis in vivo. Overall, this study represents a novel biomimetic approach to generate Gel-HPA fibrous hydrogel scaffolds which have excellent potential in soft tissue regeneration applications.
Collapse
Affiliation(s)
- Kexin Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (K.N.); (S.H.); (X.W.); (Q.L.)
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Han
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (K.N.); (S.H.); (X.W.); (Q.L.)
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (K.N.); (S.H.); (X.W.); (Q.L.)
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (K.N.); (S.H.); (X.W.); (Q.L.)
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China; (K.N.); (S.H.); (X.W.); (Q.L.)
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
44
|
Abalymov A, Van der Meeren L, Saveleva M, Prikhozhdenko E, Dewettinck K, Parakhonskiy B, Skirtach AG. Cells-Grab-on Particles: A Novel Approach to Control Cell Focal Adhesion on Hybrid Thermally Annealed Hydrogels. ACS Biomater Sci Eng 2020; 6:3933-3944. [DOI: 10.1021/acsbiomaterials.0c00119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | | | - Mariia Saveleva
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | - Ekaterina Prikhozhdenko
- Faculty of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | - Koen Dewettinck
- Department of Food Technology, Safety & Health, University of Gent, Ghent 9000, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, University of Ghent, Ghent 9000, Belgium
| |
Collapse
|
45
|
Abalymov A, Van Poelvoorde L, Atkin V, Skirtach AG, Konrad M, Parakhonskiy B. Alkaline Phosphatase Delivery System Based on Calcium Carbonate Carriers for Acceleration of Ossification. ACS APPLIED BIO MATERIALS 2020; 3:2986-2996. [DOI: 10.1021/acsabm.0c00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | | | - Vsevolod Atkin
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | - Andre G. Skirtach
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|