1
|
Soltany P, Miralinaghi M, Pajoum Shariati F. Folic acid conjugated poly (Amidoamine) dendrimer grafted magnetic chitosan as a smart drug delivery platform for doxorubicin: In-vitro drug release and cytotoxicity studies. Int J Biol Macromol 2024; 257:127564. [PMID: 37865361 DOI: 10.1016/j.ijbiomac.2023.127564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study reports the development of a magnetic and pH-responsive nanocarrier for targeted delivery and controlled release of doxorubicin (DOX). A multifunctional magnetic chitosan nanocomposite (FA-PAMAMG2-MCS) was fabricated by grafting poly(amidoamine) dendrimer and folic acid onto the MCS surface for active targeting. DOX was loaded into this core-shell bio-nanocomposite via adsorption. Structural and morphological characterization of the prepared nanomaterials was performed using XRD, FT-IR, VSM, TGA, BET, FE-SEM/EDX, and TEM techniques. Adsorption capacity of the FA-PAMAMG2-MCS was optimized by changing diverse parameters, such as pH, initial drug concentration, temperature, contact time, and adsorbent dosage. The maximum adsorption capacity for DOX was 102.85 mg g-1 at 298 K. The in-vitro drug release curve at pHs 5.6 and 7.4 manifested a faster drug release from the prepared nanocarrier in acidic environments and, conversely, a slower release in neutral environments over 48 h. The release kinetics followed Peppas-Sahlin models, showing non-Fickian behavior. Moreover, the in-vitro cytotoxicity studies against the human breast cancer (MDA-MB 231) cell line demonstrated the remarkable anticancer activity of the DOX@FA-PAMAMG2-MCS and declared its potency for nanomedicine applications. This multifunctional system could overcome limitations of conventional chemotherapeutic agents through pH-triggered drug release, enabling targeted cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Parva Soltany
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsasadat Miralinaghi
- Department of Chemistry, Faculty of Science, Varamin - Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Ahmad A, Ali F, ALOthman ZA, Luque R. UV assisted synthesis of folic acid functionalized ZnO-Ag hexagonal nanoprisms for efficient catalytic reduction of Cr +6 and 4-nitrophenol. CHEMOSPHERE 2023; 319:137951. [PMID: 36702417 DOI: 10.1016/j.chemosphere.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Chemical-based syntheses of metallic nanoparticles (MNPs) has become a major topic of research exploration in the field of nanotechnology. The utilization of folic acid (FA) as stabilizing and capping agent has been reported as a novel route for the synthesis of bimetallic nanomaterials. The present study includes novel research and brief discussion about preparation of UV light assisted ZnO-Ag nanobars (NBs) using FA as stabilizing agent and its catalytic applications on the reduction of organic pollutants (4-NP and Cr+6) using NBs as a catalyst alongwith ascorbic acid (AA). Analytical techniques including UV-visible spectroscopy, XRD, SEM, EDX and FT-IR were used for the characterizing synthesized ZnO-Ag NBs. Hexagonal structure of ZnO-Ag NBs were found having crystallite size 5.6 nm and SEM studies revealed the nanobar width 33.2 nm and length 133.5 nm. The prepared ZnO-Ag NBs were tested for their catalytic activity for the reduction of 4-nitrophenol (4-NP) and Cr+6. In the presence of ZnO-Ag NBs and AA, an effective reduction of 4-nitrophenol (4-NP) and Cr+6 was achieved up to 93% and 90% in 17 and 26 min with respectively. The successful and efficient catalytic activity of NBs may be attributed to the size of NBs or the concentration of FA employed for synthesis.
Collapse
Affiliation(s)
- Awais Ahmad
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain.
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rafael Luque
- Departmento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
3
|
Yuan X, Li J, Luo L, Zhong Z, Xie X. Advances in Sorptive Removal of Hexavalent Chromium (Cr(VI)) in Aqueous Solutions Using Polymeric Materials. Polymers (Basel) 2023; 15:388. [PMID: 36679268 PMCID: PMC9863183 DOI: 10.3390/polym15020388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Sorptive removal of hexavalent chromium (Cr(VI)) bears the advantages of simple operation and easy construction. Customized polymeric materials are the attracting adsorbents due to their selectivity, chemical and mechanical stabilities. The mostly investigated polymeric materials for removing Cr(VI) were reviewed in this work. Assembling of robust functional groups, reduction of self-aggregation, and enhancement of stability and mechanical strength, were the general strategies to improve the performance of polymeric adsorbents. The maximum adsorption capacities of these polymers toward Cr(VI) fitted by Langmuir isotherm model ranged from 3.2 to 1185 mg/g. Mechanisms of complexation, chelation, reduction, electrostatic attraction, anion exchange, and hydrogen bonding were involved in the Cr(VI) removal. Influence factors on Cr(VI) removal were itemized. Polymeric adsorbents performed much better in the strong acidic pH range (e.g., pH 2.0) and at higher initial Cr(VI) concentrations. The adsorption of Cr(VI) was an endothermic reaction, and higher reaction temperature favored more robust adsorption. Anions inhibited the removal of Cr(VI) through competitive adsorption, while that was barely affected by cations. Factors that affected the regeneration of these adsorbents were summarized. To realize the goal of industrial application and environmental protection, removal of the Cr(VI) accompanied by its detoxication through reduction is highly encouraged. Moreover, development of adsorbents with strong regeneration ability and low cost, which are robust for removing Cr(VI) at trace levels and a wider pH range, should also be an eternally immutable subject in the future. Work done will be helpful for developing more robust polymeric adsorbents and for promoting the treatment of Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xiaoqing Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jingxia Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyu Zhong
- Hunan Research Academy of Environmental Sciences, Changsha 410014, China
| | - Xiande Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Kunakham T, Hoijang S, Nguyen MD, Ananta S, Lee TR, Srisombat L. Magnesium Ferrite/Poly(cysteine methacrylate) Nanocomposites for pH-Tunable Selective Removal and Enhanced Adsorption of Indigo Carmine and Methylene Blue. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tanapong Kunakham
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Supon Ananta
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| |
Collapse
|
5
|
Selective adsorption of palladium ions from wastewater by ion-imprinted MIL-101(Cr) derived from waste polyethylene terephthalate: Isotherms and Kinetics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Maponya TC, Makgopa K, Somo TR, Modibane KD. Highlighting the Importance of Characterization Techniques Employed in Adsorption Using Metal-Organic Frameworks for Water Treatment. Polymers (Basel) 2022; 14:3613. [PMID: 36080689 PMCID: PMC9460637 DOI: 10.3390/polym14173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of toxic heavy metal ions continues to be a global concern due to their adverse effects on the health of human beings and animals. Adsorption technology has always been a preferred method for the removal of these pollutants from wastewater due to its cost-effectiveness and simplicity. Hence, the development of highly efficient adsorbents as a result of the advent of novel materials with interesting structural properties remains to be the ultimate objective to improve the adsorption efficiencies of this method. As such, advanced materials such as metal-organic frameworks (MOFs) that are highly porous crystalline materials have been explored as potential adsorbents for capturing metal ions. However, due to their diverse structures and tuneable surface functionalities, there is a need to find efficient characterization techniques to study their atomic arrangements for a better understanding of their adsorption capabilities on heavy metal ions. Moreover, the existence of various species of heavy metal ions and their ability to form complexes have triggered the need to qualitatively and quantitatively determine their concentrations in the environment. Hence, it is crucial to employ techniques that can provide insight into the structural arrangements in MOF composites as well as their possible interactions with heavy metal ions, to achieve high removal efficiency and adsorption capacities. Thus, this work provides an extensive review and discussion of various techniques such as X-ray diffraction, Brunauer-Emmett-Teller theory, scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectroscopy, and X-ray photoelectron spectroscopy employed for the characterization of MOF composites before and after their interaction with toxic metal ions. The review further looks into the analytical methods (i.e., inductively coupled plasma mass spectroscopy, ultraviolet-visible spectroscopy, and atomic absorption spectroscopy) used for the quantification of heavy metal ions present in wastewater treatment.
Collapse
Affiliation(s)
- Thabiso C. Maponya
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa
| | - Thabang R Somo
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| | - Kwena D. Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga 0727, Polokwane, South Africa
| |
Collapse
|
7
|
Sarojini G, Venkatesh Babu S, Rajamohan N, Rajasimman M. Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. ENVIRONMENTAL RESEARCH 2022; 204:112132. [PMID: 34571029 DOI: 10.1016/j.envres.2021.112132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In this experimental investigation, feasibility and performance of a polymer hybrid bio-nano composite were evaluated to remove malachite green (MG) under controlled environment conditions. The polymer hybrid bio-nanocomposite was characterized using FTIR, SEM and EDS. The influence of operating variables, namely effect of pH (2-11), nanocomposite dosage (20-100 mg), initial MG concentration (10- 200 mg/L), contact time (10-120 min) and temperature (298-318 K) were explored. The maximum removal efficiency (RE) of 99.79% was achieved at neutral pH at the dosage level of 50 mg with the initial MG concentration of 150 mg/L in 40 min. The equilibrium results revealed that the adsorption of MG data fitted to Langmuir isotherm (R2 > 0.970) indicating monolayer adsorption. The maximum adsorption capacity of polymer hybrid nanocomposite was found to be 384.615 mg/g. Kinetic studies were performed using five kinetic models and results showed the pseudo second order model fitted very well with the MG adsorption data (R2 > 0.990). The thermodynamic results confirmed that MG adsorption onto polymer hybrid nanocomposite is feasible and (ΔS ͦ = 0.2893 kJ/mol K), spontaneous (ΔH ͦ = 81.103 kJ/mol K) and exothermic (ΔG ͦ < 0). A mechanism is also proposed for the removal of MG using the polymer nanocomposite and identified that electrostatic attraction and hydrogen bonding as the major mechanism for removal of MG. FTIR results confirmed the presence of carboxyl (-COO) and hydroxyl (-OH) groups which helped in effective binding of cationic dye. The overall results revealed that polymer nanocomposite could be used as a potential adsorbent for removing MG from aqueous solution.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India.
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Faculty of Engineering, Sohar University, Sohar, P C;311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
8
|
Chigondo M, Nyamunda B, Maposa M, Chigondo F. Polypyrrole-based adsorbents for Cr(VI) ions remediation from aqueous solution: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1600-1619. [PMID: 35290234 DOI: 10.2166/wst.2022.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities are principally responsible for the manifestation of toxic and carcinogenic hexavalent chromium (Cr(VI)) triggering water pollution that threatens the environment and human health. The World Health Organisation (WHO) restricts Cr(VI) ion concentration to 0.1 and 0.05 mg/L in inland surface water and drinking water, respectively. The available technologies for Cr(VI) ion removal from water were highlighted with an emphasis on the adsorption technology. Furthermore, the characteristics of several polypyrrole-based adsorbents were scrutinized including amino-containing compounds, biosorbents, graphene/graphene oxide, clay materials and many other additives with reported effective Cr(VI) ion uptake. This efficiency in Cr(VI) ions adsorption is attributed to enhanced redox properties, increased number of functional groups as well as the synergistic behaviour of the materials making up the composites. The Langmuir isotherm best described the adsorption processes with maximum adsorption capacities ranging from 3.40-961.50 mg/g. The regeneration of Cr(VI) ion-laden adsorbents was studied. Ion exchange, electrostatic attractions, complexation, chelation reactions with protonated sites and reduction were the mechanisms of adsorption. Nevertheless, there are limited details on comprehensive adsorbent regeneration studies to prolong robustness in adsorption-desorption cycles and utilization of the Cr(VI) ion-laden adsorbent in other areas of research to limit the threat of secondary pollution.
Collapse
Affiliation(s)
- Marko Chigondo
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Benias Nyamunda
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Munashe Maposa
- Department of Chemical and Processing Engineering, Manicaland State University of Applied Sciences, Fern Hill Campus, P. Bag 7001, Mutare, Zimbabwe E-mail: ,
| | - Fidelis Chigondo
- Department of Chemical Sciences, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
| |
Collapse
|
9
|
Hu Z, Wang L, Liu M, Huang Z, Yang J, Rao W, Wang H, Xie Y, Yu C. Preparation of MES@Fe 3O 4@SiO 2-PPy magnetic microspheres for the highly efficient removal of Cr( vi). NEW J CHEM 2022. [DOI: 10.1039/d2nj04456k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel magnetic adsorbent, PPy-modified silica-coated magnetic MES organic–inorganic composite (MFSP), with high dispersibility, abundant adsorption sites, and magnetic separation was prepared successfully for the adsorption or reduction of Cr(vi).
Collapse
Affiliation(s)
- Zhaoxing Hu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Liang Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Mengxin Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziqing Huang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Jinyan Yang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Wenhui Rao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Heng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chuanbai Yu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
11
|
Acharya R, Lenka A, Parida K. Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Yang C, Jiang J, Wu Y, Fu Y, Sun Y, Chen F, Yan G, Hu J. High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Highly Efficient Visible Light Photodegradation of Cr(VI) Using Electrospun MWCNTs-Fe3O4@PES Nanofibers. Catalysts 2021. [DOI: 10.3390/catal11070868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of highly efficient photocatalysis has been prepared by two different methods for the photodegradation of Cr(VI) from an aqueous solution under visible light. The electrospun polyethersulfone (PES)/iron oxide (Fe3O4) and multi-wall carbon nanotubes (MWCNTs) composite nanofibers have been prepared using the electrospinning technique. The prepared materials were characterized by SEM and XRD analysis. The result reveals the successful fabrication of the composite nanofiber with uniformly and smooth nanofibers. The effect of numerous parameters were explored to investigate the effects of pH value, contact time, concentration of Cr(VI), and reusability. The MWCNTs-Fe3O4@PES composite nanofibers exhibited excellent photodegradation of Cr(VI) at pH 2 in 80 min. The photocatalysis materials are highly stable without significant reduction of the photocatalytic efficiency of Cr(VI) after five cycles. Therefore, due to its easy separation and reuse without loss of photocatalytic efficiency, the photocatalysis membrane has tremendous potential for the removal of heavy metals from aqueous solutions.
Collapse
|
14
|
Gong Z, Chan HT, Chen Q, Chen H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. NANOMATERIALS 2021; 11:nano11071792. [PMID: 34361182 PMCID: PMC8308365 DOI: 10.3390/nano11071792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/07/2022]
Abstract
Toxic heavy metal contamination in food and water from environmental pollution is a significant public health issue. Heavy metals do not biodegrade easily yet can be enriched hundreds of times by biological magnification, where toxic substances move up the food chain and eventually enter the human body. Nanotechnology as an emerging field has provided significant improvement in heavy metal analysis and removal from complex matrices. Various techniques have been adapted based on nanomaterials for heavy metal analysis, such as electrochemical, colorimetric, fluorescent, and biosensing technology. Multiple categories of nanomaterials have been utilized for heavy metal removal, such as metal oxide nanoparticles, magnetic nanoparticles, graphene and derivatives, and carbon nanotubes. Nanotechnology-based heavy metal analysis and removal from food and water resources has the advantages of wide linear range, low detection and quantification limits, high sensitivity, and good selectivity. There is a need for easy and safe field application of nanomaterial-based approaches.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hiu Ting Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| |
Collapse
|
15
|
Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composite Hydrogel for Cr(VI) Removal. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, Ama OM, Adetunji CO, Siloko IU. Effect of hexavalent chromium on the environment and removal techniques: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111809. [PMID: 33360556 DOI: 10.1016/j.jenvman.2020.111809] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Despite the importance of chromium (Cr) in most anthropogenic activities, the subsequent environmental adulteration is now a source of major concern. Cr occurs in numerous oxidation states, with the furthermost stable and frequently occur states being Cr(0), Cr(III) and Cr(VI). Cr(0) and Cr(III) are vital trace elements while Cr(VI) is dispensable and noxious to living organisms. Predominantly in plants, Cr at low concentrations of about 0.05-1 mg/L assist to boost growth as well as increase productivity. However, accumulation of Cr could represent a potential threat to living organisms. Cr absorption, displacement and accretion depend on its speciation, which also determines its toxicity which is often diverse. Indications of its toxicity include; reduction of seed germination, retardation of growth, reduction of yield, inhibition of enzymatic activities, weakening of photosynthesis, nutrient, oxidative disparities and genetic mutation in plants as well as several injurious diseases in animals and humans. In this study, we have presented a comprehensive review as well as an informative account of the influence of Cr on the environment drawn from researches carried out over the years following an analytical approach. Uniquely, this work presents a review of the effects and remediation of Cr from soil and wastewater drawn from several evidence and meta-data-based articles and other publications. Accordingly, the write-up is intended to appeal to the consciousness of the general public that the significance of Cr notwithstanding, its environmental toxicity should not be taken for granted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, Edo State, Nigeria.
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - Wilson Nwankwo
- Cyberphysical/Green Computing Unit, Department of Computer Science and Mathematics, Edo University Iyamho, Edo State, Nigeria
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Hugues Kamdem Paumo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Onoyivwe Monday Ama
- Department of Chemical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa; Department of Chemical Science, University of Johannesburg, Doornfontein, South Africa
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Edo State, Nigeria
| | - Israel Uzuazor Siloko
- Mathematical Statistics/Modelling Unit, Department of Computer Science and Mathematics, Edo University Iyamho, Edo State, Nigeria
| |
Collapse
|
17
|
Kumar A, Prasad S, Saxena PN, Ansari NG, Patel DK. Synthesis of an Alginate-Based Fe 3O 4-MnO 2 Xerogel and Its Application for the Concurrent Elimination of Cr(VI) and Cd(II) from Aqueous Solution. ACS OMEGA 2021; 6:3931-3945. [PMID: 33644530 PMCID: PMC7906430 DOI: 10.1021/acsomega.0c05787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
In this study, magnetite-manganese oxide (Fe3O4-MnO2) nanoparticles were synthesized and immobilized on alginate, producing a magnetite-manganese oxide xerogel (mMOX). This eco-friendly xerogel was used as an adsorbent of Cr(VI) and Cd(II). It was mesoporous and thermally stable, as determined by Brunauer-Emmett-Teller and thermogravimetric analysis. A scanning electron microscope coupled with an energy-dispersive X-ray system, Zetasizer, and attenuated total reflectance-Fourier transform infrared were used for characterization of adsorbents. The performance of the mMOX was investigated for the simultaneous adsorption of Cr(VI) and Cd(II) at different temperatures, pH values, contact times, initial concentrations of the adsorbate, and adsorbent doses. The developed xerogel (mMOX) showed high adsorption capacities of 3.86 mg/g for Cr(VI) and 3.95 mg/g for Cd(II) on 120 min of contact time with 5 ppm Cr(VI) and Cd(II) solution. The kinetic data fitted well with the pseudo-second order, while the Freundlich isotherm model was found to be fit for adsorption data. Thermodynamic study revealed the adsorption to be spontaneous and exothermic. The adsorbent showed useful application for real water samples by more than 75% uptake of Cr and Cd with low adsorption of Na, K, and Mg. The regeneration study indicated that the mMOX could be reused up to six cycles with more than 50% removal of Cr(VI) and Cd(II) ions from aqueous solution with minimal leaching of metal ions (Fe, Ca, Na, K, and Mn) into the solution.
Collapse
Affiliation(s)
- Aditya Kumar
- Analytical
Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi
Marg, Lucknow 226001, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satgur Prasad
- Analytical
Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi
Marg, Lucknow 226001, Uttar Pradesh, India
| | - Prem N. Saxena
- Electron
Microscopy, CSIR-Indian Institute of Toxicology
Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar
Pradesh, India
| | - Nasreen G. Ansari
- Analytical
Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi
Marg, Lucknow 226001, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra K. Patel
- Analytical
Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi
Marg, Lucknow 226001, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Yan Z, Wu T, Fang G, Ran M, Shen K, Liao G. Self-assembly preparation of lignin-graphene oxide composite nanospheres for highly efficient Cr(vi) removal. RSC Adv 2021; 11:4713-4722. [PMID: 35424380 PMCID: PMC8694538 DOI: 10.1039/d0ra09190a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g-1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g-1 in 200 mg g-1 Cr(vi) solution. Therefore, the prepared lignin-GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.
Collapse
Affiliation(s)
- Zhenyu Yan
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Miao Ran
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guangfu Liao
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| |
Collapse
|
19
|
Farooqi ZH, Akram MW, Begum R, Wu W, Irfan A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123535. [PMID: 33254738 PMCID: PMC7382355 DOI: 10.1016/j.jhazmat.2020.123535] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Waseem Akram
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
20
|
Adsorption Evaluation for the Removal of Nickel, Mercury, and Barium Ions from Single-Component and Mixtures of Aqueous Solutions by Using an Optimized Biobased Chitosan Derivative. Polymers (Basel) 2021; 13:polym13020232. [PMID: 33440888 PMCID: PMC7827732 DOI: 10.3390/polym13020232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In this experimental study, the use of 5-hydroxymethyl-furfural (HMF) organic compound as a grafting agent to chitosan natural polymer (CS) was examined. One optimized chitosan derivative was synthesized, and then tested (CS-HMF), in order to uptake nickel, mercury, and barium metal ions from single- and triple-component (multi-component) aqueous solutions. The characterization of the material before and after the metal uptake was achieved by scanning electron microscopy (SEM). The ability of the adsorption of CS-HMF was tested at pH = 6. The adjusting of temperature from 25 to 65 °C caused the increase in the adsorption capacity. The equilibrium data were fitted to the models of Langmuir and Freundlich, while the data from kinetic experiments were fitted to pseudo-1st and pseudo-2nd order models. The best fitting was achieved for the Langmuir model (higher R2). The adsorption capacity for nickel, mercury, and barium removal at 25 °C (single component) was 147, 107, and 64 (mg/g), respectively. However, the total adsorption capacity for the multi-component was 204 mg/g. A thermodynamic study was also done, and the values of ΔG0, ΔH0, and ΔS0 were evaluated.
Collapse
|
21
|
Zaidi R, Ullah Khan S, Farooqi I, Azam A. Rapid adsorption of Pb (II) and Cr (VI) from aqueous solution by Aluminum hydroxide nanoparticles: Equilibrium and kinetic evaluation. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2021.03.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Malatji N, Makhado E, Ramohlola KE, Modibane KD, Maponya TC, Monama GR, Hato MJ. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44089-44105. [PMID: 32761344 DOI: 10.1007/s11356-020-10166-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Carboxymethyl cellulose/poly(acrylic acid) (CMC-cl-pAA) hydrogel and its magnetic hydrogel nanocomposite (CMC-cl-pAA/Fe3O4-C30B) were prepared via a free radical polymerization method and used as adsorbents for adsorption of methylene blue (MB) dye. The samples were characterized using Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectrometer, high-resolution transmission electron microscope, and dynamic mechanical analysis. The adsorption performance of the prepared adsorbents was studied in a batch mode. Adsorption kinetics and isotherm models were applied in the experimental data to evaluate the nature as well as the mechanism of adsorption processes. It was deduced that the adsorption followed the pseudo-second-order rate equation and Langmuir isotherm models. The maximum adsorption capacities were found to be 1109.55 and 1081.60 mg/g for CMC-cl-pAA hydrogel and CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite, respectively. The adsorption thermodynamic studies suggested that the adsorption process was spontaneous and endothermic for CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite. The homogeneous dispersion of the Fe3O4-C30B nanocomposite in the CMC-cl-pAA hydrogel significantly improved the thermal stability, mechanical strength, and excellent regeneration stability. This study demonstrates the application potential of the fascinating properties of CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite as a highly efficient adsorbent in the removal of organic dyes from aqueous solution.
Collapse
Affiliation(s)
- Nompumelelo Malatji
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Edwin Makhado
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| | - Kabelo Edmond Ramohlola
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Kwena Desmond Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| | - Thabiso Carol Maponya
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Gobeng Release Monama
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Mpitloane Joseph Hato
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| |
Collapse
|
23
|
Matome S, Makhado E, Katata-Seru L, Maponya T, Modibane K, Hato M, Bahadur I. Green synthesis of polypyrrole/nanoscale zero valent iron nanocomposite and use as an adsorbent for hexavalent chromium from aqueous solution. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
24
|
Cao X, Wang Q, Wang S, Man R. Preparation of a Novel Polystyrene-Poly(hydroxamic Acid) Copolymer and Its Adsorption Properties for Rare Earth Metal Ions. Polymers (Basel) 2020; 12:polym12091905. [PMID: 32847090 PMCID: PMC7564469 DOI: 10.3390/polym12091905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel polystyrene-poly(hydroxamic acid) copolymer was synthesized as an effective adsorbent for the treatment of rare earth elements. Through the use of elemental analysis as well as FTIR, SEM, XPS, and Brunauer-Emmett-Teller (BET) surface area measurement, the synthesized polymer was found to have a specific surface area of 111.4 m2·g−1. The adsorption performances of rare metal ions were investigated under different pH levels, contact times, initial concentrations of rare earth ions, and temperatures. The adsorption equilibrium for La3+, Ce3+, and Y3+ onto a polystyrene-poly(hydroxamic acid) copolymer is described by the Langmuir model, which confirms the applicability of monolayer coverage of rare earth ions onto a polystyrene-poly(hydroxamic acid) copolymer. The amount of adsorption capacities for La3+, Ce3+, and Y3+ reached 1.27, 1.53, and 1.83 mmol·g−1 within four hours, respectively. The adsorption process was controlled by liquid film diffusion, particle diffusion, and chemical reaction simultaneously. The thermodynamic parameters, including the change of Gibbs free energy (∆G), the change of enthalpy (∆H), and the change of entropy (∆S), were determined. The results indicate that the adsorption of resins for La3+, Ce3+ and Y3+ was spontaneous and endothermic. The polymer was also used as a recyclable adsorbent by the desorption experiment.
Collapse
Affiliation(s)
- Xiaoyan Cao
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China; (X.C.); (Q.W.); (R.M.)
- School of Chemical and Environmental Engineering, and Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
| | - Qing Wang
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China; (X.C.); (Q.W.); (R.M.)
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China; (X.C.); (Q.W.); (R.M.)
- Correspondence: ; Tel.: +86-731-88879616
| | - Ruilin Man
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China; (X.C.); (Q.W.); (R.M.)
| |
Collapse
|
25
|
Mohammadi L, Rahdar A, Khaksefidi R, Ghamkhari A, Fytianos G, Kyzas GZ. Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents. Polymers (Basel) 2020; 12:E1313. [PMID: 32526844 PMCID: PMC7362001 DOI: 10.3390/polym12061313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
There are different ways for antibiotics to enter the aquatic environment, with wastewater treatment plants (WWTP) considered to be one of the main points of entrance. Even treated wastewater effluent can contain antibiotics, since WWTP cannot eliminate the presence of antibiotics. Therefore, adsorption can be a sustainable option, compared to other tertiary treatments. In this direction, a versatile synthesis of poly(styrene-block-acrylic acid) diblock copolymer/Fe3O4 magnetic nanocomposite (abbreviated as P(St-b-AAc)/Fe3O4)) was achieved for environmental applications, and particularly for the removal of antibiotic compounds. For this reason, the synthesis of the P(St-b-AAc) diblock copolymer was conducted with a reversible addition fragmentation transfer (RAFT) method. Monodisperse superparamagnetic nanocomposite with carboxylic acid groups of acrylic acid was adsorbed on the surface of Fe3O4 nanoparticles. The nanocomposites were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) analysis. Then, the nanoparticles were applied to remove ciprofloxacin (antibiotic drug compound) from aqueous solutions. The effects of various parameters, such as initial drug concentration, solution pH, adsorbent dosage, and contact time on the process were extensively studied. Operational parameters and their efficacy in the removal of Ciprofloxacin were studied. Kinetic and adsorption isothermal studies were also carried out. The maximum removal efficiency of ciprofloxacin (97.5%) was found at an initial concentration of 5 mg/L, pH 7, adsorbent's dosage 2 mg/L, contact time equal to 37.5 min. The initial concentration of antibiotic and the dose of the adsorbent presented the highest impact on efficiency. The adsorption of ciprofloxacin was better fitted to Langmuir isotherm (R2 = 0.9995), while the kinetics were better fitted to second-order kinetic equation (R2 = 0.9973).
Collapse
Affiliation(s)
- Leili Mohammadi
- PhD of Environmental Health, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Razieh Khaksefidi
- Department of Environmental Health, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Aliyeh Ghamkhari
- Institute of Polymeric Materials, Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran;
| | - Georgios Fytianos
- Department of Chemistry, International Hellenic University, Kavala 65404, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, Kavala 65404, Greece;
| |
Collapse
|
26
|
Chitosan Grafted with Biobased 5-Hydroxymethyl-Furfural as Adsorbent for Copper and Cadmium Ions Removal. Polymers (Basel) 2020; 12:polym12051173. [PMID: 32443800 PMCID: PMC7285093 DOI: 10.3390/polym12051173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Abstract
This work investigates the application of 5-hydroxymethyl-furfural (HMF) as a grafting agent to chitosan (CS). The material produced was further modified by cross-linking. Three different derivatives were tested with molecular ratios CS/HMF of 1:1 (CS-HMF1), 2:1 (CS-HMF2) and 10:1 mol/mol (CS-HMF3)) to remove Cu2+ and Cd2+ from aqueous solutions. CS-HMF derivatives were characterized both before, and after, metal ions adsorption by using scanning electron microscopy (SEM), as well as Fourier-transform infrared (FTIR) spectroscopy thermogravimetric analysis (TGA), and X-Ray diffraction analysis (XRD). The CS-HMF derivatives were tested at pH = 5 and showed higher adsorption capacity with the increase of temperature. Also, the equilibrium data were fitted to Langmuir (best fitting) and Freundlich model, while the kinetic data to pseudo-first (best fitting) and pseudo-second order equations. The Langmuir model fitted better (higher R2) the equilibrium data than the Freundlich equation. By increasing the HMF grafting from 130% (CS-HMF1) to 310% (CS-HMF3), an increase of 24% (26 m/g) was observed for Cu2+ adsorption and 19% (20 mg/g) for Cd2+. By increasing from T = 25 to 65 °C, an increase of the adsorption capacity (metal uptake) was observed. Ten reuse cycles were successfully carried out without significant loss of adsorption ability. The reuse potential was higher of Cd2+, but more stable desorption reuse ability during all cycles for Cu2+.
Collapse
|