1
|
Potaś-Stobiecka J, Wach RA, Jurkiewicz K, Basa A, Wróblewska M, Winnicka K. How to proceed with easily recrystallizing secnidazole in designing polyelectrolyte complex-based films for periodontitis treatment? Eur J Pharm Sci 2025; 209:107115. [PMID: 40315938 DOI: 10.1016/j.ejps.2025.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Secnidazole is a second generation 5-nitroimidazole with high potential for application in anaerobic periodontal infections therapy. In this study, the process of developing the drug-loaded films composed of oppositely charged chitosan and pectin for intra-pocket administration is presented. Due to limitations of layer-by-layer technique in receiving systems of this type, which resulted from spontaneous crystallization of secnidazole at the stage of drying, a new preparation method was developed. For this purpose, drug cocrystallization technique as well as two-step drying procedure were implemented in order to minimize secnidazole crystals growth during solvent evaporation. Through visual assessment, mechanical strength measurements and scanning electron microscopy imaging, the most promising secnidazole-chitosan cocrystals-loaded films were selected for further physicochemical (via differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray powder diffraction, optical microscopy) and pharmaceutical (in vitro release, antimicrobial and swelling tests) analyses. The impact of utilized polymeric composition and polyelectrolyte complex structures as well as secnidazole form (crystalline/amorphous) on the films performance was observed. The increased temperature of drying enhanced secnidazole-polymers miscibility, which resulted in desirable drug loading improvement and also significantly prolonged secnidazole release to the artificial saliva.
Collapse
Affiliation(s)
- Joanna Potaś-Stobiecka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland.
| | - Radosław A Wach
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland.
| | - Karolina Jurkiewicz
- A. Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Anna Basa
- Department of Physical Chemistry, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland.
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland.
| |
Collapse
|
2
|
Puttharaksa W, Charoensook R, Tungtrakanpoung R, Hoidokhom N, Rungchang S, Brenig B, Numthuam S. A Preliminary Evaluation of the Comparative Efficacy of Gel-Based and Oil-Based CBD on Hematologic and Biochemical Responses in Dogs. Vet Sci 2025; 12:342. [PMID: 40284843 PMCID: PMC12031437 DOI: 10.3390/vetsci12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Cannabidiol (CBD) has gained popularity in veterinary medicine for its potential to alleviate stress, pain, and inflammation in dogs. However, its oral administration is limited by hydrophobicity, variable absorption, and extensive first-pass metabolism, which requires optimized delivery methods to enhance efficacy. This study investigated the effects of daily oral supplementation of CBD oil and CBD gel (each at 4 mg/kg), compared to a placebo, over 14 days in shelter dogs subjected to solitary confinement-induced stress. Both CBD formulations appeared safe under the study conditions, with no adverse effects on hematological and biochemical parameters. Post-stress cortisol levels were significantly lower in CBD-treated groups compared to controls, with CBD-infused gel showing a pattern toward greater attenuation. Multivariate analysis revealed distinct blood profile shifts in CBD-treated dogs, with PCA loadings indicating associations between CBD supplementation and lymphocyte percentages and IgG levels. These findings support gel-based CBD as a promising strategy for stress modulation in dogs. Further studies should explore its pharmacokinetics and long-term immune effects to optimize veterinary applications.
Collapse
Affiliation(s)
- Wassana Puttharaksa
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (W.P.); (R.C.); (N.H.)
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (W.P.); (R.C.); (N.H.)
| | - Rongdej Tungtrakanpoung
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Niramon Hoidokhom
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (W.P.); (R.C.); (N.H.)
| | - Saowaluk Rungchang
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand;
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany;
| | - Sonthaya Numthuam
- Division of Animal Science and Feed Technology, Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; (W.P.); (R.C.); (N.H.)
| |
Collapse
|
3
|
Potaś-Stobiecka J, Wach RA, Rokita B, Simonik WK, Wróblewska M, Borkowska K, Mork S, Škalko-Basnet N, Winnicka K. Improving Atorvastatin Release from Polyelectrolyte Complex-Based Hydrogels Using Freeze-Drying: Formulation and Pharmaceutical Assessment of a Novel Delivery System for Oral Candidiasis Treatment. Int J Mol Sci 2025; 26:2267. [PMID: 40076888 PMCID: PMC11900555 DOI: 10.3390/ijms26052267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Atorvastatin calcium, an antifungal agent, has the potential to be repositioned/repurposed to combat the increasing antimicrobial resistance. However, one of the most crucial issues in developing atorvastatin calcium-loaded products with a topical antifungal effect is achieving the optimal release and dissolution rates of this statin to produce the desired therapeutic effect. In this paper, we report on the development and pharmaceutical assessment of hydrogels composed of low-molecular-weight chitosan, tragacanth, and xanthan gum/pectin/κ-carrageenan as potential drug carriers for atorvastatin calcium for buccal delivery. Multidirectional analysis of the carriers with regard to their drug-release profiles and mucoadhesive, antimicrobial, and cytotoxic properties was accompanied by an evaluation of the freeze-drying process used to improve the hydrogels' applicability. Using differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques, the role of lyophilization in enhancing atorvastatin calcium delivery from polyelectrolyte complex-based matrices via drug amorphization was demonstrated. The freeze-dried hydrogels had significantly improved release and dissolution rates for the amorphic statin. Therefore, there is great potential for the use of lyophilization in the design of polyelectrolyte complex-based semi-solids in usable dosage forms for numerous crystalline and poorly water-soluble active substances.
Collapse
Affiliation(s)
- Joanna Potaś-Stobiecka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Radosław Aleksander Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland; (R.A.W.); (B.R.)
| | - Bożena Rokita
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, 93-590 Łódź, Poland; (R.A.W.); (B.R.)
| | - Weronika Kaja Simonik
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (W.K.S.); (K.B.)
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| | - Karolina Borkowska
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (W.K.S.); (K.B.)
| | - Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (S.M.); (N.Š.-B.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway; (S.M.); (N.Š.-B.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (M.W.); (K.W.)
| |
Collapse
|
4
|
Khaing EM, Lertsuphotvanit N, Thammasut W, Rojviriya C, Chansatidkosol S, Phattarateera S, Pichayakorn W, Phaechamud T. Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole. Polymers (Basel) 2024; 16:3477. [PMID: 39771329 PMCID: PMC11728690 DOI: 10.3390/polym16243477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent. Consequently, assessments were conducted on the physicochemical properties, gel formation, drug permeation, drug release, morphological topography, and antimicrobial activities of the formulation. The formulation demonstrated an increased slope characteristic of Newtonian flow at higher bioplastic concentrations. The adequate polymer concentration facilitated swift phase inversion, resulting in robust, solid-like matrices. The mechanical characteristics of the transformed in situ gel typically exhibit an upward trend as the polymer concentration increased. The utilization of sodium fluorescein and Nile red as fluorescent probes effectively tracked the interfacial solvent-aqueous movement during the phase inversion of in situ gels, confirming that the cellulose acetate butyrate matrix delayed the solvent exchange process. The initial burst release of metronidazole and doxycycline hyclate was minimized, achieving a sustained release profile over 7 days in in situ gels containing 25% and 40% cellulose acetate butyrate, primarily governed by a diffusion-controlled release mechanism. Metronidazole showed higher permeation through the porcine buccal membrane, while doxycycline hyclate exhibited greater tissue accumulation, both influenced by polymer concentration. The more highly concentrated polymeric in situ gel formed a uniformly porous structure. Metronidazole and doxycycline hyclate-loaded in situ gels showed synergistic antibacterial effects against S. aureus and P. gingivalis. Over time, the more highly concentrated polymeric in situ gel showed superior retention of antibacterial efficacy due to its denser cellulose acetate butyrate matrix, which modulated drug release and enhanced synergistic effects, making it a promising injectable treatment for periodontitis, particularly against P. gingivalis.
Collapse
Affiliation(s)
- Ei Mon Khaing
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
| | | | - Warakon Thammasut
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand;
| | - Siraprapa Chansatidkosol
- Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Supanut Phattarateera
- Plastic Technology Research Team, Advanced Polymer Research Group, National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand;
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Thawatchai Phaechamud
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (W.T.)
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
5
|
Alaghawani NA, Alkhatib H, Elmancy L, Daou A. Harmonizing Innovations: An In-Depth Comparative Review on the Formulation, Applications, and Future Perspectives of Aerogels and Hydrogels in Pharmaceutical Sciences. Gels 2024; 10:663. [PMID: 39451316 PMCID: PMC11507152 DOI: 10.3390/gels10100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Gels, specifically hydrogels and aerogels, have emerged as versatile materials with profound implications in pharmaceutical sciences. This comprehensive review looks into detail at hydrogels and aerogels, providing a general introduction to gels as a foundation. The paper is then divided into distinct sections for hydrogels and aerogels, each delving into their unique formulations, advantages, disadvantages, and applications. In the realm of hydrogels, we scrutinize the intricacies of formulation, highlighting the versatile advantages they offer. Conversely, potential limitations are explored, paving the way for a detailed discussion on their applications, with a specific focus on their role in antimicrobial applications. Shifting focus to aerogels, a thorough overview is presented, followed by a detailed explanation of the complex formulation process involving sol-gel chemistry; aging; solvent exchange; and drying techniques, including freeze drying, supercritical drying, and ambient-pressure drying (APD). The intricacies of drug loading and release from aerogels are addressed, providing insights into their pharmaceutical potential. The advantages and disadvantages of aerogels are examined, accompanied by an exploration of their applications, with a specific emphasis on antimicrobial uses. The review culminates in a comparative analysis, juxtaposing the advantages and disadvantages of hydrogels and aerogels. Furthermore, the current research and development trends in the applications of these gels in pharmaceutical sciences are discussed, providing a holistic view of their potential and impact. This review serves as a comprehensive guide for researchers, practitioners, and enthusiasts, seeking a deeper understanding of the distinctive attributes and applications of hydrogels and aerogels in the ever-evolving research concerning pharmaceutical sciences.
Collapse
Affiliation(s)
| | | | | | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.A.); (H.A.); (L.E.)
| |
Collapse
|
6
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
7
|
Narayanan VHB, Durai R, Gonciarz W, Brzezinski M. Effect of aluminium oxide nanoparticles on long-acting oleogels laden with Sc-PLA-chitosan nanoparticles for anti-HIV therapy. Int J Biol Macromol 2024; 273:132829. [PMID: 38844278 DOI: 10.1016/j.ijbiomac.2024.132829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
The development of a long-acting injectable drug delivery systems (DDS) of active pharmaceutical ingredients (API) holds great promise in addressing the challenges of treatment adherence, predominantly in HIV/AIDS. Polymers are inevitable carriers for the preparation of DDS, which are typically composed of polylactide (PLA), carbohydrates such as chitosan or cellulose derivatives. In this study, the tenofovir alafenamide (TAF) laden PLA-stereocomplex-chitosan nanoparticles (Sc-PLA-chitosan NPs) were developed through the spray-dried technique. These NPs had a mean particle size of 91 ± 8 nm and were incorporated into oleogels consisting of sesame oil and ethyl-cellulose. To enhance the syringeability of highly viscous oleogels, the commercially available aluminium oxide NPs were added with a size of 78 nm. The proposed DDS exhibits prolonged sustained release for up to 12 days in phosphate buffer pH 7.4. Noteworthy, the oleogels with Sc-PLA-chitosan NPs displayed extended tissue permeation properties indicating their potential long-acting in-vivo drug release. Collectively, this study recommends that the development of Sc-PLA-chitosan NPs-loaded oleogels represents a certainly adaptable long-acting injectables system for the delivery of APIs in the context of HIV/AIDS. This system is expected to contribute to improved and effective treatment adherence among patients infected with HIV and provide requisite therapeutic outcomes.
Collapse
Affiliation(s)
- Vedha Hari B Narayanan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401. Tamil Nadu, India.
| | - Ramyadevi Durai
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401. Tamil Nadu, India
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Brzezinski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
8
|
Yang Z, Cui J, Yun Y, Xu Y, Tan CP, Zhang W. Effect of different gelators on the physicochemical properties and microstructure of coconut oleogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5139-5148. [PMID: 38284624 DOI: 10.1002/jsfa.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), β-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO). RESULTS Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by β and β'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO. CONCLUSION Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihan Yang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jingtao Cui
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonghuan Yun
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
9
|
Ferreira LMDMC, Modesto YY, de Souza PDQ, Nascimento FCDA, Pereira RR, Converti A, Lynch DG, Brasil DDSB, da Silva EO, Silva-Júnior JOC, Ribeiro-Costa RM. Characterization, Biocompatibility and Antioxidant Activity of Hydrogels Containing Propolis Extract as an Alternative Treatment in Wound Healing. Pharmaceuticals (Basel) 2024; 17:575. [PMID: 38794145 PMCID: PMC11123975 DOI: 10.3390/ph17050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a polyacrylamide/methylcellulose hydrogel containing propolis as an active ingredient, to serve as a wound dressing alternative, for the treatment of skin lesions. The hydrogels were prepared using free radical polymerization, and were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, swelling capacity, mechanical and rheological properties, UV-Vis spectroscopy, antioxidant activity by the DPPH, ABTS and FRAP assays and biocompatibility determined in Vero cells and J774 macrophages by the MTT assay. Hydrogels showed a porous and foliaceous structure with a well-defined network, a good ability to absorb water and aqueous solutions simulating body fluids as well as desirable mechanical properties and pseudoplastic behavior. In hydrogels containing 1.0 and 2.5% propolis, the contents of total polyphenols were 24.74 ± 1.71 mg GAE/g and 32.10 ± 1.01 mg GAE/g and those of total flavonoids 8.01 ± 0.99 mg QE/g and 13.81 ± 0.71 mg QE/g, respectively, in addition to good antioxidant activity determined with all three methods used. Therefore, hydrogels containing propolis extract, may serve as a promising alternative wound dressing for the treatment of skin lesions, due to their anti-oxidant properties, low cost and availability.
Collapse
Affiliation(s)
| | - Yuri Yoshioka Modesto
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| | | | | | - Rayanne Rocha Pereira
- Institute of Collective Health, Federal University of Western Pará, Santarém 68035-110, Brazil;
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Pole of Chemical Engineering, via Opera Pia 15, 16145 Genoa, Italy;
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Edilene Oliveira da Silva
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (P.D.Q.d.S.); (E.O.d.S.)
| | | | - Roseane Maria Ribeiro-Costa
- Institute of Health Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (Y.Y.M.); (J.O.C.S.-J.)
| |
Collapse
|
10
|
Potaś J, Wach RA, Rokita B, Wróblewska M, Winnicka K. Evaluation of the impact of tragacanth/xanthan gum interpolymer complexation with chitosan on pharmaceutical performance of gels with secnidazole as potential periodontal treatment. Eur J Pharm Sci 2024; 192:106657. [PMID: 38040098 DOI: 10.1016/j.ejps.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Periodontitis consists a group of dental disorders that affect about 70 % of the world population. The therapy mainly relies on mechanical removing bacterial biofilm, nevertheless, local or systemic antibacterial agents play a key role in treating the acute conditions. Secnidazole is a newer derivative of commonly used metronidazole with high safety profile and broad spectrum of antimicrobial activity. The aim of the study was to evaluate the applicability of polyelectrolyte complex-based hydrogels composed of anionic tragacanth with addition of xanthan gum and cationic chitosan as carriers for buccal/intra pocket delivery of secnidazole. Prepared hydrogels with 5 % and 10 % (w/w) drug content were evaluated pharmaceutically towards inter alia physicomechanical, rheological and thermal properties, drug release kinetics, swelling behavior or antimicrobial activity. Cytotoxicity against human primary umbilical vein endothelial cells was also assessed with two independent method. Stable compositions with secnidazole were obtained, however, various miscibility of the drug with the polymers was noted. By adding chitosan, antibacterial activity and swelling performance of the gels were improved, nevertheless, drop of the mucoadhesiveness was also recorded. Hydrogels with 5 % secnidazole were selected as effective antimicrobial compositions with the highest cytocompatibility. They might be considered as promising for oromucosal application with special attention given to SEC as an alternative locally administered antimicrobial agent.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland.
| | - Radosław A Wach
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Bożena Rokita
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| |
Collapse
|
11
|
Sebastian S, Yadav E, Bhardwaj P, Maruthi M, Kumar D, Gupta MK. Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release. J Mater Chem B 2023; 11:9975-9986. [PMID: 37823277 DOI: 10.1039/d3tb01527k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Infections caused by bacteria are the primary cause of illness and death globally, and antibiotics are the most commonly used medications to treat them. However, there are certain inherent problems in administering these drugs without any changes to their effectiveness. In order to sustain the targeted dosage over time, the use of a biocompatible local drug delivery system using low molecular mass gelators is preferred as a potential approach to reduce its side effects. Low molecular weight organic gelators (LMWOGs) have drawn a lot of attention due to their numerous and varied applications in multiple fields. But nowadays its quite a challenging task to synthesize new types of LMWOGs that can fill the significant gap towards potential applications. In this work, we have explored a multicomponent pathway for the synthesis of a small repertoire of peptoids from simple building blocks by a one-pot Ugi reaction. A variety of novel effective low molecular weight organic gelators have been synthesized, leading to the formation of stable self-assembled aggregates in various solvents such as DMSO, aqueous DMSO, and methanol. Consequently, these aggregates give rise to the creation of organogels and organo/hydrogels. The gels have a minimum gelation concentration (MGC) of 1-2% w/v with high thermal stability. Furthermore, successful encapsulation and release of metronidazole (MZ) were achieved within the gel matrix under physiological pH conditions at 37 °C, ensuring the preservation of its structural and functional properties. The results demonstrated that the release rate of MZ from the organo/hydrogels is contingent on pH, exhibiting a gradual and regulated release in mild alkaline environments. Moreover, the devised system displayed noteworthy antimicrobial efficacy against E. coli, underscoring the potential of these novel low molecular weight organic gels (LMWOGs) as effective drug delivery systems in the pharmaceutical industry. The gel formulations exhibit biocompatibility and negligible cytotoxicity, as evidenced by cell viability studies conducted using the MTT assay.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173 229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
12
|
Karmakar S, Shanmugasundaram S, Modak B. Oleogel-based drug delivery for the treatment of periodontitis: current strategies and future perspectives. F1000Res 2023; 12:1228. [PMID: 38690138 PMCID: PMC11058454 DOI: 10.12688/f1000research.140173.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 05/02/2024] Open
Abstract
Periodontitis is the chronic inflammation of tooth-supporting tissues that leads to loss of tooth support if untreated. Conventional therapy for periodontitis (mechanical removal of microbial biofilm and oral hygiene enforcement) is augmented by anti-microbial and anti-inflammatory drugs. These drugs are frequently delivered locally into the periodontal pocket for maximum efficiency and minimum adverse effects. The potential of oleogels for periodontal drug delivery has been discussed and further, the future scope of oleogel-based drug delivery systems in dentistry. An oleogel-based local drug delivery system offers several advantages over other systems. Superior mechanical properties (firmness and compressibility), muco-adhesion, shear thinning, thixotropy, controlled drug release and the ability to incorporate water-insoluble drugs clearly distinguish and highlight the potential of oleogels as periodontal local drug delivery systems. Bigels can combine the qualities of both hydrogels and oleogels to provide a more promising option for drug delivery. However, there is limited evidence concerning oleogels as local drug delivery agents in periodontics. Further studies are needed to discern the clinical efficacy of oleogel-based drug delivery systems.
Collapse
Affiliation(s)
- Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Baishakhi Modak
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
13
|
Francavilla A, Corradini MG, Joye IJ. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023; 9:648. [PMID: 37623103 PMCID: PMC10453560 DOI: 10.3390/gels9080648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Bigels have been mainly applied in the pharmaceutical sector for the controlled release of drugs or therapeutics. However, these systems, with their intricate structures, hold great promise for wider application in food products. Besides their classical role as carrier and target delivery vehicles for molecules of interest, bigels may also be valuable tools for building complex food structures. In the context of reducing or even eliminating undesirable (but often highly functional) food components, current strategies often critically affect food structure and palatability. The production of solid fat systems that are trans-fat-free and have high levels of unsaturated fatty acids is one of the challenges the food industry currently faces. According to recent studies, bigels can be successfully used as ingredients for total or partial solid fat replacement in complex food matrices. This review aims to critically assess current research on bigels in food and pharmaceutical applications, discuss the role of bigel composition and production parameters on the characteristics of bigels and further expand the use of bigels as solid fat replacers and functional food ingredients. The hydrogel:oleogel ratio, selected gelators, inclusion of surfactants and encapsulation of molecules of interest, and process parameters (e.g., temperature, shear rate) during bigel production play a crucial role in the bigel's rheological and textural properties, microstructure, release characteristics, biocompatibility, and stability. Besides exploring the role of these parameters in bigel production, future research directions for bigels in a food context are explored.
Collapse
Affiliation(s)
- Alyssa Francavilla
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| | - Maria G. Corradini
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
- Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Iris J. Joye
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.F.); (M.G.C.)
| |
Collapse
|
14
|
Zheng H, Zhou Y, Zheng Y, Liu G. Advances in hydrogels for the treatment of periodontitis. J Mater Chem B 2023; 11:7321-7333. [PMID: 37431231 DOI: 10.1039/d3tb00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Periodontitis is the second most prevalent oral disease and can cause serious harm to human health. Hydrogels are excellent biomaterials that can be used for periodontitis as drug delivery platforms to achieve inflammation control through high drug delivery efficiency and sustained drug release and as tissue scaffolds to achieve tissue remodelling through encapsulated cell wrapping and effective mass transfer. In this review, we summarize the latest advances in the treatment of periodontitis with hydrogels. The pathogenic mechanisms of periodontitis are introduced first, followed by the recent progress of hydrogels in controlling inflammation and tissue reconstruction, in which the specific performance of hydrogels is discussed in detail. Finally, the challenges and limitations of hydrogels for clinical applications in periodontitis are discussed and possible directions for development are proposed. This review aims to provide a reference for the design and fabrication of hydrogels for the treatment of periodontitis.
Collapse
Affiliation(s)
- Huiyu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yuan Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yu Zheng
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Mazzinelli E, Favuzzi I, Arcovito A, Castagnola R, Fratocchi G, Mordente A, Nocca G. Oral Mucosa Models to Evaluate Drug Permeability. Pharmaceutics 2023; 15:pharmaceutics15051559. [PMID: 37242801 DOI: 10.3390/pharmaceutics15051559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its numerous advantages, such as excellent drug accessibility, rapid absorption, and bypass of first-pass metabolism, the route of drug administration that involves crossing the oral mucosa is highly favored. As a result, there is significant interest in investigating the permeability of drugs through this region. The purpose of this review is to describe the various ex vivo and in vitro models used to study the permeability of conveyed and non-conveyed drugs through the oral mucosa, with a focus on the most effective models. Currently, there is a growing need for standardized models of this mucosa that can be used for developing new drug delivery systems. Oral Mucosa Equivalents (OMEs) may provide a promising future perspective as they are capable of overcoming limitations present in many existing models.
Collapse
Affiliation(s)
- Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Ilaria Favuzzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| | - Raffaella Castagnola
- UOC Odontoiatria Generale e Ortodonzia, Dipartimento Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa Collo, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
- Dipartimento di Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giorgia Fratocchi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| | - Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
16
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 PMCID: PMC11966650 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A. Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
17
|
Sotirova Y, Gugleva V, Stoeva S, Kolev I, Nikolova R, Marudova M, Nikolova K, Kiselova-Kaneva Y, Hristova M, Andonova V. Bigel Formulations of Nanoencapsulated St. John's Wort Extract-An Approach for Enhanced Wound Healing. Gels 2023; 9:gels9050360. [PMID: 37232952 DOI: 10.3390/gels9050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John's wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl behenate (GB) as a solid lipid, almond oil (AO), or borage oil (BO) representing the liquid lipid, along with polyoxyethylene (20) sorbitan monooleate (PSMO) and sorbitan monooleate (SMO) as surfactants. The dispersions demonstrated anisometric nanoscale particles with acceptable size distribution and disrupted crystalline structure, providing entrapment capacity higher than 70%. The carrier exhibiting preferable characteristics (HP-NLC2) was gelled with Poloxamer 407 (PM407) to serve as the hydrophilic phase of a bigel, to which the combination of BO and sorbitan monostearate (SMS) organogel was added. The eight prepared bigels with different proportions (blank and nanodispersion-loaded) were characterized rheologically and texturally to investigate the impact of the hydrogel-to-oleogel ratio. The therapeutic potential of the superior formulation (HP-NLC-BG2) was evaluated in vivo on Wistar male rats through the tensile strength test on a primary-closed incised wound. Compared with a commercial herbal semisolid and a control group, the highest tear resistance (7.764 ± 0.13 N) was achieved by HP-NLC-BG2, proving its outstanding wound-healing effect.
Collapse
Affiliation(s)
- Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Stanila Stoeva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rositsa Nikolova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria
| | - Maria Marudova
- Department of Physics, Faculty of Physics and Technology, University of Plovdiv "Paisii Hilendarski", 4000 Plovdiv, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| |
Collapse
|
18
|
El-Dahmy RM, Elsayed I, Hussein J, Althubiti M, Almaimani RA, El-Readi MZ, Elbaset MA, Ibrahim BMM. Development of Transdermal Oleogel Containing Olmesartan Medoxomil: Statistical Optimization and Pharmacological Evaluation. Pharmaceutics 2023; 15:1083. [PMID: 37111569 PMCID: PMC10146305 DOI: 10.3390/pharmaceutics15041083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Olmesartan medoxomil (OLM) is a first-line antihypertensive drug with low oral bioavailability (28.6%). This study aimed to develop oleogel formulations to decrease OLM side effects and boost its therapeutic efficacy and bioavailability. OLM oleogel formulations were composed of Tween 20, Aerosil 200, and lavender oil. A central composite response surface design chose the optimized formulation, containing Oil/Surfactant (SAA) ratio of 1:1 and Aerosil % of 10.55%, after showing the lowest firmness and compressibility, and the highest viscosity, adhesiveness, and bioadhesive properties (Fmax and Wad). The optimized oleogel increased OLM release by 4.21 and 4.97 folds than the drug suspension and gel, respectively. The optimized oleogel formulation increased OLM permeation by 5.62 and 7.23 folds than the drug suspension and gel, respectively. The pharmacodynamic study revealed the superiority of the optimized formulation in maintaining normal blood pressure and heart rate for 24 h. The biochemical analysis revealed that the optimized oleogel achieved the best serum electrolyte balance profile, preventing OLM-induced tachycardia. The pharmacokinetic study showed that the optimized oleogel increased OLM's bioavailability by more than 4.5- and 2.5-folds compared to the standard gel and the oral market tablet, respectively. These results confirmed the success of oleogel formulations in the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 04184, United Arab Emirates
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Bassant M. M. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
19
|
Narayanan VHB, Lewandowski A, Durai R, Gonciarz W, Wawrzyniak P, Brzezinski M. Spray-dried tenofovir alafenamide-chitosan nanoparticles loaded oleogels as a long-acting injectable depot system of anti-HIV drug. Int J Biol Macromol 2022; 222:473-486. [DOI: 10.1016/j.ijbiomac.2022.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
|
20
|
Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. Front Bioeng Biotechnol 2022; 10:1039495. [PMID: 36267448 PMCID: PMC9577098 DOI: 10.3389/fbioe.2022.1039495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic ulcer is a serious complication of diabetes. Compared with that of healthy people, the skin of patients with a diabetic ulcer is more easily damaged and difficult to heal. Without early intervention, the disease will become increasingly serious, often leading to amputation or even death. Most current treatment methods cannot achieve a good wound healing effect. Numerous studies have shown that a nanocomposite hydrogel serves as an ideal drug delivery method to promote the healing of a diabetic ulcer because of its better drug loading capacity and stability. Nanocomposite hydrogels can be loaded with one or more drugs for application to chronic ulcer wounds to promote rapid wound healing. Therefore, this paper reviews the latest progress of delivery systems based on nanocomposite hydrogels in promoting diabetic ulcer healing. Through a review of the recent literature, we put forward the shortcomings and improvement strategies of nanocomposite hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Sen Tong
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qingyu Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Qiaoyan Liu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| |
Collapse
|
21
|
A novel oral medicated jelly for enhancement of etilefrine hydrochloride bioavailability: In vitro characterization and pharmacokinetic evaluation in healthy human volunteers. Saudi Pharm J 2022; 30:1435-1447. [DOI: 10.1016/j.jsps.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
|
22
|
Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers (Basel) 2022; 14:polym14122473. [PMID: 35746048 PMCID: PMC9230444 DOI: 10.3390/polym14122473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/07/2022] Open
Abstract
Oleogels are becoming an attractive research field, since they have recently been shown to be feasible for the food and pharmaceutical sectors and provided some insights into the biomedical area. In this work, edible oleogels were tailored through the combination of ethylcellulose (EC), a gelling agent, with virgin coconut oil (VCO), vegetable oil derived from coconut. The influence of the different EC and VCO ratios on the structural, physical, and thermal properties of the oleogels was studied. All EC/VCO-based oleogels presented a stable network with a viscoelastic nature, adequate structural stability, modulable stiffness, high oil-binding capability, antioxidant activity, and good thermal stability, evidencing the EC and VCO’s good compatibility.
Collapse
|
23
|
Does the Freeze-Thaw Technique Affect the Properties of the Alginate/Chitosan Glutamate Gels with Posaconazole as a Model Antifungal Drug? Int J Mol Sci 2022; 23:ijms23126775. [PMID: 35743216 PMCID: PMC9224349 DOI: 10.3390/ijms23126775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are semi-solid systems with high flexibility, which, due to holding large amounts of water, are similar to natural tissues and are very useful in the field of biomedical applications. Despite the wide range of polymers available to form hydrogels, novel techniques utilized to obtain hydrogels with adequate properties are still being developed. The aim of this study was to evaluate the impact of the freeze–thaw technique on the properties of cryogels based on sodium alginate and chitosan glutamate with posaconazole as a model antifungal substance. The effect of the freezing and thawing process on the physicochemical, rheological, textural and bioadhesive properties of prepared cryogels was examined. Additionally, the antifungal activity against Candida albicans, Candida parapsilosis and Candida krusei of designed formulations was examined. It was shown that the freeze–thaw technique significantly improved viscosity, bioadhesiveness, textural properties and prolonged the in vitro posaconazole release. Moreover, alginate/chitosan glutamate cryogels exhibited higher values of inhibition zone in C. parapsilosis culture than traditional hydrogel formulations.
Collapse
|
24
|
Hosny KM, Naveen NR, Kurakula M, Sindi AM, Sabei FY, Fatease AA, Jali AM, Alharbi WS, Mushtaq RY, Felemban M, Tayeb HH, Alfayez E, Rizg WY. Design and Development of Neomycin Sulfate Gel Loaded with Solid Lipid Nanoparticles for Buccal Mucosal Wound Healing. Gels 2022; 8:gels8060385. [PMID: 35735729 PMCID: PMC9222678 DOI: 10.3390/gels8060385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Drug administration to the wound site is a potential method for wound healing. The drug retention duration should be extended, and drug permeability through the buccal mucosal layer should be regulated. Oral wounds can be caused by inflammation, ulcers, trauma, or pathological lesions; if these wounds are not treated properly, they can lead to pain, infection, and subsequent undesirable scarring. This study aimed to develop Kolliphor-407 P-based gel containing neomycin sulfate (NES) loaded in solid lipid nanoparticles (SLNs) and enhance the antimicrobial activity. By considering lipid concentrations and achieving the lowest particle size (Y1) and maximum entrapment (EE-Y2) effectiveness, the formulation of NES-SLN was optimized using the Box–Behnken design. For the selected responses, 17 runs were formulated (as anticipated by the Design-Expert software) and evaluated accordingly. The optimized formulation could achieve a particle size of 196.25 and EE of 89.27% and was further utilized to prepare the gel formulation. The NES-SLN-G formula was discovered to have a smooth, homogeneous structure and good mechanical and rheological properties. After 24 h of treatment, NES-SLN-G showed a regulated in vitro drug release pattern, excellent ex vivo permeability, and increased in vitro antibacterial activity. These findings indicate the potential application of NES-SLN-loaded gels as a promising formulation for buccal mucosal wound healing.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence:
| | - Amal M. Sindi
- Department of Oral Diagnostic Science, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 82511, Saudi Arabia;
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Majed Felemban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam H. Tayeb
- Nanomedicine Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Eman Alfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (K.M.H.); (W.S.A.); (W.Y.R.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Catastrophic phase inversion of bigels characterized by fluorescence intensity-based 3D modeling and the formability for decorating and 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Pilicheva B, Uzunova Y, Marudova M. Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers (Basel) 2022; 14:polym14040734. [PMID: 35215645 PMCID: PMC8879725 DOI: 10.3390/polym14040734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of this research was to study the potential of polyelectrolyte multilayers as buccal dosage forms for drug delivery and to investigate how the properties of the drugs impact the overall performance of the delivery system. Multilayer films based on the polyelectrolyte interaction between casein and chitosan were developed using benzydamine, tolfenamic acid and betahistine as model drugs. The samples were characterized for surface pH, moisture content and moisture absorption, swelling behavior and mucoadhesion. Additionally, surface morphology was investigated, as well as the drugs' physical state after incorporation in the multilayer films. The samples proved to be non-irritant (pH was within the physiological range), physically stable (moisture content and moisture absorption below 5%) and mucoadhesive, adsorbing from 60 to 70% mucin. The release behavior corelated to the swelling index profiles of the samples and was strongly dependent on the drug solubility. The developed multilayer films appeared to be an optimum delivery system for sparingly soluble drugs due to the high drug loading achieved.
Collapse
Affiliation(s)
- Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
- Correspondence:
| | - Yordanka Uzunova
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria;
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd, 4002 Plovdiv, Bulgaria
| | - Maria Marudova
- Department of Physics, Faculty of Physics and Technology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
27
|
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery. Int J Biol Macromol 2022; 194:1010-1018. [PMID: 34843817 DOI: 10.1016/j.ijbiomac.2021.11.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease.
Collapse
|
28
|
Vyas J, Raytthatha N, Shah I, Upadhyay U. Bigels: A newer system – An opportunity for topical application. HAMDAN MEDICAL JOURNAL 2022. [DOI: 10.4103/hmj.hmj_33_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Martín-Illana A, Notario-Pérez F, Cazorla-Luna R, Ruiz-Caro R, Bonferoni MC, Tamayo A, Veiga MD. Bigels as drug delivery systems: From their components to their applications. Drug Discov Today 2021; 27:1008-1026. [PMID: 34942374 DOI: 10.1016/j.drudis.2021.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Bigels are systems that usually result from mixing a hydrogel and an organogel: the aqueous phase is commonly formed by a hydrophilic biopolymer, whereas the organic phase comprises a gelled vegetable oil because of the presence of an organogelator. The proportion of the corresponding gelling agent in each phase, the organogel/hydrogel ratio, and the mixing temperature and speed all need to be taken into consideration for bigel manufacturing. Bigels, which are particularly useful drug delivery systems, have already been formulated for transdermal, buccal, and vaginal routes. Mechanical assessments and microscopy are the most reported characterization techniques. As we review here, their composition and unique structure confer promising drug delivery attributes, such as mucoadhesion, the ability to control drug release, and the possibility of including both hydrophilic and lipophilic drugs in the same system.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria C Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aitana Tamayo
- Department of Chemical-Physics of Surfaces and Processes, Institute of Ceramics and Glass, Spanish National Research Council, 28049 Madrid, Spain
| | - María D Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
30
|
The Influence of Tea Tree Oil on Antifungal Activity and Pharmaceutical Characteristics of Pluronic ® F-127 Gel Formulations with Ketoconazole. Int J Mol Sci 2021; 22:ijms222111326. [PMID: 34768755 PMCID: PMC8582737 DOI: 10.3390/ijms222111326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal skin infections are currently a major clinical problem due to their increased occurrence and drug resistance. The treatment of fungal skin infections is based on monotherapy or polytherapy using the synergy of the therapeutic substances. Tea tree oil (TTO) may be a valuable addition to the traditional antifungal drugs due to its antifungal and anti-inflammatory activity. Ketoconazole (KTZ) is an imidazole antifungal agent commonly used as a treatment for dermatological fungal infections. The use of hydrogels and organogel-based formulations has been increasing for the past few years, due to the easy method of preparation and long-term stability of the product. Therefore, the purpose of this study was to design and characterize different types of Pluronic® F-127 gel formulations containing KTZ and TTO as local delivery systems that can be applied in cases of skin fungal infections. The influence of TTO addition on the textural, rheological, and bioadhesive properties of the designed formulations was examined. Moreover, the in vitro release of KTZ, its permeation through artificial skin, and antifungal activity by the agar diffusion method were performed. It was found that obtained gel formulations were non-Newtonian systems, showing a shear-thinning behaviour and thixotropic properties with adequate textural features such as hardness, compressibility, and adhesiveness. Furthermore, the designed preparations with TTO were characterized by beneficial bioadhesive properties. The presence of TTO improved the penetration and retention of KTZ through the artificial skin membrane and this effect was particularly visible in hydrogel formulation. The developed gels containing TTO can be considered as favourable formulations in terms of drug release and antifungal activity.
Collapse
|
31
|
Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021; 13:pharmaceutics13101588. [PMID: 34683881 PMCID: PMC8538955 DOI: 10.3390/pharmaceutics13101588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.
Collapse
|
32
|
Torres-Figueroa AV, Pérez-Martínez CJ, Encinas JC, Burruel-Ibarra S, Silvas-García MI, García Alegría AM, del Castillo-Castro T. Thermosensitive Bioadhesive Hydrogels Based on Poly( N-isopropylacrilamide) and Poly(methyl vinyl ether- alt-maleic anhydride) for the Controlled Release of Metronidazole in the Vaginal Environment. Pharmaceutics 2021; 13:pharmaceutics13081284. [PMID: 34452245 PMCID: PMC8402040 DOI: 10.3390/pharmaceutics13081284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
The development of thermosensitive bioadhesive hydrogels as multifunctional platforms for the controlled delivery of microbicides is a valuable contribution for the in situ treatment of vagina infections. In this work, novel semi-interpenetrating network (s-IPN) hydrogels were prepared by the entrapment of linear poly(methyl vinyl ether-alt-maleic anhydride) (PVME-MA) chains within crosslinked 3D structures of poly(N-isopropylacrylamide) (PNIPAAm). The multifunctional platforms were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal techniques, rheological analysis, swelling kinetic measurements, and bioadhesion tests on porcine skin. The hydrogels exhibited an interconnected porous structure with defined boundaries. An elastic, solid-like behavior was predominant in all formulations. The swelling kinetics were strongly dependent on temperature (25 °C and 37 °C) and pH (7.4 and 4.5) conditions. The s-IPN with the highest content of PVME-MA displayed a significantly higher detachment force (0.413 ± 0.014 N) than the rest of the systems. The metronidazole loading in the s-IPN improved its bioadhesiveness. In vitro experiments showed a sustained release of the antibiotic molecules from the s-IPN up to 48 h (94%) in a medium simulating vaginal fluid, at 37 °C. The thermosensitive and bioadhesive PNIPAAm/PVME-MA systems showed a promising performance for the controlled release of metronidazole in the vaginal environment.
Collapse
Affiliation(s)
- Ana V. Torres-Figueroa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Cinthia J. Pérez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - J. Carmelo Encinas
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Silvia Burruel-Ibarra
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - María I. Silvas-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Alejandro M. García Alegría
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - Teresa del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
- Correspondence:
| |
Collapse
|
33
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021; 7:gels7030086. [PMID: 34287270 PMCID: PMC8293095 DOI: 10.3390/gels7030086] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
Oleogels are semi-solid materials containing a large fraction of liquid oil entrapped in a network of structuring molecules. In the food industry, these formulations can be used to mimic fats and to deliver bioactive compounds. In the last decade, there has been increasing interest in these structures, not only from a scientific point of view, i.e., studying new molecules, methodologies for gelification, and new structures, but also from a technological point of view, with researchers and companies exploring these structures as a way to overcome certain challenges and/or create new and innovative products. One of the exciting applications of oleogels is the delivery of functional molecules, where the incorporation of oil-soluble functional compounds can be explored not only at the macroscale but also at micro- and nanoscales, resulting in different release behaviors and also different applications. This review presents and discusses the most recent works on the development, production, characterization, and applications of oleogels and other oleogel-based systems to deliver functional molecules in foods.
Collapse
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
- Correspondence:
| |
Collapse
|
34
|
Effect of carboxylated carbon nanotubes on physicochemical and drug release properties of oleogels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Hasda AM, Vuppaladadium SSR, Qureshi D, Prasad G, Mohanty B, Banerjee I, Shaikh H, Anis A, Sarkar P, Pal K. Graphene oxide reinforced nanocomposite oleogels improves corneal permeation of drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|