1
|
Levett I, Pratt S, Agarwal A, Lant P, Laycock B. A new tool to screen biodegradable polymers as technically and commercially viable fertiliser coatings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179371. [PMID: 40203742 DOI: 10.1016/j.scitotenv.2025.179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Polymer coated controlled release fertilisers can mitigate nutrient pollution by aligning nutrient release to plant demand, thereby reducing losses, fertiliser application and potentially increasing yields. However, most current commercial products use polymers that do not readily degrade. This use of non-degradable plastics to coat fertilisers is being phased out, opening new opportunities to develop and commercialise truly biodegradable coating alternatives. However, the technical challenge is substantial. The coating needs to eventually fully mineralise, leaving no microplastic legacy, yet it must also maintain good mechanical and barrier properties for extended periods. This work presents the first effort to develop a polymer material selection tool to guide biodegradable polymer selection for use as fertiliser coatings based on the polymers' known properties and commercial considerations. Using a new mechanistic model, a relationship was established between the elongation required to avoid coating rupture and the water vapour permeability (WVP) of the coating. Then, a broad list of commercially available biodegradable polymers was assembled and literature data on their WVP and elongation at break collated. By comparing this data and the model outcomes, the polymers most likely to achieve long term release were shortlisted. This list was further condensed by setting a maximum polymer price and minimum global production capacity for commercial viability. We have shortlisted polycaprolactone, biodegradable polyurethane and natural rubber as strong candidates for biodegradable fertiliser coatings. However, their rate of biodegradation requires further investigation. Flexible polyhydroxyalkanoates, poly(butylene succinate) and poly(propylene carbonate) are technically promising, but not currently commercially viable.
Collapse
Affiliation(s)
- Ian Levett
- ARC Centre for Bioplastics and Biocomposites, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Steven Pratt
- ARC Centre for Bioplastics and Biocomposites, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ayush Agarwal
- Departmernt of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Paul Lant
- ARC Centre for Bioplastics and Biocomposites, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- ARC Centre for Bioplastics and Biocomposites, School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Ghosh S, Ghosh S. Vegetable oil-derived functional polymers in biomedical applications: hurdles and possibilities. J Mater Chem B 2025; 13:4994-5022. [PMID: 40201987 DOI: 10.1039/d4tb02648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Over the past several years, renewable resource-based polymers have consistently attracted research attention from academia and industry as an alternative to petroleum-based polymers. Depletion of fuel reserves, the rising cost of petroleum products, and strict government regulations drive the search for alternative resources. Vegetable oils have been considered as one of the sustainable feedstocks considering their natural abundance, low cost, and ecological acceptance. Vegetable oils are used to generate various biobased functional polymers like polyester, polyamide, poly(ester amide)s, polyurethane, and photocurable resins. These polymers have demonstrated a wide range of applications, including coating materials, fire retardants, and adhesives, and have also been explored in biomedical research. This review provides a comprehensive discussion on developing various polymers derived from vegetable oils, which show promise in biomedical applications such as tissue engineering, drug delivery, antimicrobial, tissue adhesives, and biosensor applications. Additionally, the review highlights the challenges and future opportunities associated with these sustainably sourced biobased polymers.
Collapse
Affiliation(s)
- Shrinjay Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
3
|
Maldonado-Estudillo J, Navarro Crespo R, Marcos-Fernández Á, Caputto MDDD, Cruz-Jiménez G, Báez JE. Experimental Design (2 4) to Improve the Reaction Conditions of Non-Segmented Poly(ester-urethanes) (PEUs) Derived from α,ω-Hydroxy Telechelic Poly(ε-caprolactone) (HOPCLOH). Polymers (Basel) 2025; 17:668. [PMID: 40076160 PMCID: PMC11902744 DOI: 10.3390/polym17050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Aliphatic unsegmented polyurethanes (PUs) have garnered relatively limited attention in the literature, despite their valuable properties such as UV resistance and biocompatibility, making them suitable for biomedical applications. This study focuses on synthesizing poly(ester-urethanes) (PEUs) using 1,6-hexamethylene diisocyanate and the macrodiol α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH). To optimize the synthesis, a statistical experimental design approach was employed, a methodology not commonly utilized in polymer science. The influence of reaction temperature, time, reagent concentrations, and solvent type on the resulting PEUs was investigated. Characterization techniques included FT-IR, 1H NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), optical microscopy, and mechanical testing. The results demonstrated that all factors significantly impacted the number-average molecular weight (Mn) as determined by GPC. Furthermore, the statistical design revealed crucial interaction effects between factors, such as a dependence between reaction time and temperature. For example, a fixed reaction time of 1 h, with the temperature varying from 50 °C to 61 °C, did not significantly alter Mn. Better reaction conditions yielded high Mn (average: 162,000 g/mol), desirable mechanical properties (elongation at break > 1000%), low levels of unreacted HOPCLOH in the PEU films (OH/ESTER response = 0.0008), and reduced crystallinity (ΔHm = 11 J/g) in the soft segment, as observed by DSC and optical microscopy. In contrast, suboptimal conditions resulted in low Mn, brittle materials with unmeasurable mechanical properties, high crystallinity, and significant amounts of residual HOPCLOH. The best experimental conditions were 61 °C, 0.176 molal, 8 h, and chloroform as the solvent (ε = 4.8).
Collapse
Affiliation(s)
| | - Rodrigo Navarro Crespo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (Á.M.-F.); (M.D.d.D.C.)
| | - Ángel Marcos-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (Á.M.-F.); (M.D.d.D.C.)
| | - María Dolores de Dios Caputto
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (Á.M.-F.); (M.D.d.D.C.)
| | - Gustavo Cruz-Jiménez
- Departament of Pharmacy, University of Guanajuato (UG), Noria Alta S/N, Guanajuato 36050, Mexico
| | - José E. Báez
- Departament of Chemistry, University of Guanajuato (UG), Noria Alta S/N, Guanajuato 36050, Mexico
| |
Collapse
|
4
|
Vieira de Sousa T, da Silva Reis F, Gomes de Melo WG, Rai AM, Rai M, Lobo AO, Martins Argôlo Neto N, de
Matos JME. In Situ Preparation of Composite Scaffolds Based on Polyurethane and Hydroxyapatite Particles for Bone Tissue Engineering. ACS OMEGA 2025; 10:5478-5488. [PMID: 39989807 PMCID: PMC11840783 DOI: 10.1021/acsomega.4c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
This article details the in situ preparation of composite scaffolds using polyurethane (PU) and HAp (hydroxyapatite), focusing on the unique properties of buriti oil (Mauritia flexuosa L.) applicable to tissue engineering. PU derived from vegetable oils, particularly buriti oil, has shown promise in bone tissue repair due to its rich bioactive compounds. Buriti oil is an excellent candidate for manufacturing these materials as it is an oil rich in bioactive compounds such as carotenoids, tocopherols, and fatty acids, which have antioxidant and anti-inflammatory properties. Furthermore, buriti oil has oleic acid as its principal fatty acid, which has been investigated as an excellent HAp dispersant. This research aimed to synthesize PU scaffolds from a polyol derived from buriti oil and incorporate HAp in different concentrations into the polymeric matrix through in situ polymerization. The chemical composition of the materials obtained, the distribution of hydroxyapatite particles in the polyurethane matrix, and the thermal stability were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), and thermogravimetry (TGA). In addition, to investigate biocompatibility, MTT tests (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium) were conducted using rat bone-marrow-derived mesenchymal stem cells (BMMSC). Characterizations confirm the formation of PU and the presence of HAp in the polymeric matrix, and the materials did not show cytotoxicity.
Collapse
Affiliation(s)
| | | | - Wanderson Gabriel Gomes de Melo
- Integrated
Nucleus of Morphology and Stem Cell Research (NUPCelt), Postgraduate
Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| | - Aditya M. Rai
- School
of Management Studies, G H Raisoni University, Anjangaon Bari Rd, Badnera, Amravati,
Nimbhora, Amravati 444701, India
| | - Mahendra Rai
- Department
of Biotechnology, Sant Gadge Baba Amravati
University, Amravati 444602, India
| | | | - Napoleão Martins Argôlo Neto
- Integrated
Nucleus of Morphology and Stem Cell Research (NUPCelt), Postgraduate
Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| | - José Milton E. de
Matos
- Federal
University of Piaui-UFPI, Teresina 64049-550, Brazil
- Laboratory
of Nanostructured Oxides and Polymeric Materials - NanOPol, Chemistry
Department − Nature Science Center (CCN), Federal University of Piauí, Teresina-Pi 64049-550, Brazil
| |
Collapse
|
5
|
Katnic SP, Gupta RK. From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124192. [PMID: 39842313 DOI: 10.1016/j.jenvman.2025.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE). By examining biofilms, researchers can determine key enzymes involved in polymer degradation and improve their efficiency through genetic engineering. In addition, the review explores in detail the structure and development of biofilms on polymeric surfaces, elucidating the role of specific microbial strains necessary for biofilm formation and maintenance. Techniques for identifying enzymes within biofilms and improving their degradation ability are also discussed. The review concludes with recent discoveries in enzyme isolation and the key role of biofilms in the degradation and recycling of major plastic pollutants such as PET, PU, and PE. These findings highlight the potential of biofilm-derived enzymes to promote sustainable polymer recycling.
Collapse
Affiliation(s)
- Slavica Porobic Katnic
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; University of Belgrade, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, 11000, Serbia
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
6
|
Kampangsat S, Kajornprai T, Tangjatuporn W, Suppakarn N, Trongsatitkul T. Enhancing Tensile Modulus of Polyurethane-Based Shape Memory Polymers for Wound Closure Applications through the Addition of Palm Oil. Polymers (Basel) 2024; 16:1941. [PMID: 39000796 PMCID: PMC11244373 DOI: 10.3390/polym16131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Thermo-responsive, biocompatible polyurethane (PU) with shape memory properties is highly desirable for biomedical applications. An innovative approach to producing wound closure strips using shape memory polymers (SMPs) is of significant interest. In this work, PU composed of polycaprolactone (PCL) and 1,4-butanediol (BDO) was synthesized using two-step polymerization. Palm oil (PO) was added to PU for enhancing the Young's modulus of the PU beyond the set criterion of 130 MPa. It was found that PU had the ability to crystallize at room temperature and the segments of individual PCL and BDO polyurethanes crystallized separately. The crystalline domains and hard segment of PU greatly affected the tensile properties. The reduction of crystalline domains by the addition of PO and deformation at the higher melting temperature of the crystalline PCL polyurethane phase improved the shape fixity and shape recovery ratios. The new irreversible phase, raised from the permanent deformation upon stretching at the between melting temperature of the crystalline PCL and BDO polyurethanes of 70 °C, resulted in a decrease in shape fixity ratio after the first thermomechanical stretching-recovering cycles. The demonstration of PU as a wound closure strip showed its efficiency and potential until the surgical wound healed.
Collapse
Affiliation(s)
- Sirasit Kampangsat
- School of Biomedical Innovation Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Todsapol Kajornprai
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Warakarn Tangjatuporn
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nitinat Suppakarn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Biomedical Innovation Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
7
|
Rayung M, Ghani NA, Hasanudin N. A review on vegetable oil-based non isocyanate polyurethane: towards a greener and sustainable production route. RSC Adv 2024; 14:9273-9299. [PMID: 38505386 PMCID: PMC10949916 DOI: 10.1039/d3ra08684d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
The transition from conventional polyurethane (PU) to non isocyanate polyurethane (NIPU) is driven mainly by safety concerns, environmental considerations, and sustainability issues associated with the current PU technology. NIPU has emerged as a promising alternative, addressing limitations related to traditional PU production. There has been increasing interest in bio-based NIPU aligning with the aspiration for green materials and processes. One important biomass resource for the development of bio-based NIPU is vegetable oil, an abundant, renewable, and relatively low cost feedstock. As such, this review aims to provide insight into the progression of NIPU derived from vegetable oils. This article highlights the synthetic and green approach to NIPU production, emphasizing the method involving the polyaddition reaction of cyclic carbonates and amines. The review includes case studies on vegetable oil-based NIPU and perspectives on their properties. Further, discussions on the potential applications and commercial importance of PU and NIPU are included. Finally, we offer perspectives on possible research directions and the future prospects of NIPU, contributing to the ongoing evolution of PU technology.
Collapse
Affiliation(s)
- Marwah Rayung
- School of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Pahang Kampus Jengka 26400 Bandar Tun Razak Pahang Malaysia
| | - Noraini Abd Ghani
- Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Norhafizah Hasanudin
- Terra Mineral Lab Sdn Bhd Level 16, Perak Techno Trade Centre Bandar Meru Jaya, Off Jalan Jelapan Ipoh 30020 Perak Darul Ridzuan Malaysia
| |
Collapse
|
8
|
Morales-González M, Navas-Gómez K, Diaz LE, Gómez-Tejedor JA, Valero MF. Incorporation of Chitosan in Polyurethanes Based on Modified Castor Oil for Cardiovascular Applications. Polymers (Basel) 2023; 15:3733. [PMID: 37765587 PMCID: PMC10535904 DOI: 10.3390/polym15183733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The increased demand for vascular grafts for the treatment of cardiovascular diseases has led to the search for novel biomaterials that can achieve the properties of the tissue. According to this, the investigation of polyurethanes has been a promising approach to overcome the present limitations. However, some biological properties remain to be overcome, such as thrombogenicity and hemocompatibility, among others. This paper aims to synthesize polyurethanes based on castor oil and castor oil transesterified with triethanolamine (TEA) and pentaerythritol (PE) and with the incorporation of 1% chitosan. Analysis of the wettability, enzymatic degradation, mechanical properties (tensile strength and elongation at break), and thermal stability was performed. Along with the evaluation of the cytotoxicity against mouse fibroblast (L929) and human dermal fibroblast (HDFa) cells, the hemolysis rate and platelet adhesion were determined. The castor-oil-based polyurethanes with and without 1% chitosan posed hydrophobic surfaces and water absorptions of less than 2% and enzymatic degradation below 0.5%. Also, they were thermally stable until 300 °C, with tensile strength like cardiovascular tissues. The synthesized castor oil/chitosan polyurethanes are non-cytotoxic (cell viabilities above 80%) to L929 and HDFa cells and non-thrombogenic and non-hemolytic (less than 2%); therefore, they are suitable for cardiovascular applications.
Collapse
Affiliation(s)
- Maria Morales-González
- Energy, Materials and Environmental Group (GEMA), Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
| | - Kelly Navas-Gómez
- Energy, Materials and Environmental Group (GEMA), Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
| | - Luis E. Diaz
- Bioprospecting Research Group (GIBP), Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
| | - José A. Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Manuel F. Valero
- Energy, Materials and Environmental Group (GEMA), Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia
| |
Collapse
|
9
|
Stavila E, Yuliati F, Adharis A, Laksmono JA, Iqbal M. Recent advances in synthesis of polymers based on palm oil and its fatty acids. RSC Adv 2023; 13:14747-14775. [PMID: 37197178 PMCID: PMC10184022 DOI: 10.1039/d3ra01913f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Palm oil is a versatile bio-renewable resource for consumer products, oleochemicals, and biofuels. The utilization of palm oil in polymer production as a bio-based polymer is considered a promising alternative to conventional petrochemical-based polymers due to its non-toxicity, biodegradability, and vast obtainability. Triglycerides and fatty acids in palm oil and their derivatives can be utilized as bio-based monomers for synthesizing polymers. This review summarizes the recent advancement in using palm oil and its fatty acids for polymer synthesis and their applications. Moreover, this review will overview the most commonly used synthesis pathways for producing palm oil-based polymers. Therefore, this review can be used as a reference for designing a new approach to synthesizing palm oil-based polymers with desired properties.
Collapse
Affiliation(s)
- Erythrina Stavila
- Research Center for Polymer Technology, Research Organization for Nanotechnology and Material (ORNM), National Research and Innovation Agency (BRIN) Gedung 460 KST B. J. Habibie/Puspiptek, Jl. Raya Puspiptek Tangerang Selatan 15315 Banten Indonesia
| | - Frita Yuliati
- Research Center for Polymer Technology, Research Organization for Nanotechnology and Material (ORNM), National Research and Innovation Agency (BRIN) Gedung 460 KST B. J. Habibie/Puspiptek, Jl. Raya Puspiptek Tangerang Selatan 15315 Banten Indonesia
| | - Azis Adharis
- Department of Chemistry, Faculty of Science and Computer Science, Universitas Pertamina (UPER) Jl. Teuku Nyak Arief, RT.7/RW.8, Simprug Jakarta Selatan 12220 Daerah Khusus Ibukota Jakarta Indonesia
| | - Joddy Arya Laksmono
- Research Center for Polymer Technology, Research Organization for Nanotechnology and Material (ORNM), National Research and Innovation Agency (BRIN) Gedung 460 KST B. J. Habibie/Puspiptek, Jl. Raya Puspiptek Tangerang Selatan 15315 Banten Indonesia
| | - Muhammad Iqbal
- Department of Chemistry, Faculty of Mathematics and Science, Institut Teknologi Bandung (ITB) Jl. Ganesha No. 10 Bandung 40135 Jawa Barat Indonesia
| |
Collapse
|
10
|
Natural Additives Improving Polyurethane Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14132533. [PMID: 35808578 PMCID: PMC9269143 DOI: 10.3390/polym14132533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a growing interest in using polymers with antibacterial and antifungal properties; therefore, the present review is focused on the effect of natural compounds on the antibacterial and antifungal properties of polyurethane (PUR). This topic is important because materials and objects made with this polymer can be used as antibacterial and antifungal ones in places where hygiene and sterile conditions are particularly required (e.g., in healthcare, construction industries, cosmetology, pharmacology, or food industries) and thus can become another possibility in comparison to commonly used disinfectants, which mostly show high toxicity to the environment and the human health. The review presents the possibilities of using natural extracts as antibacterial, antifungal, and antiviral additives, which, in contrast to the currently used antibiotics, have a much wider effect. Antibiotics fight bacterial infections by killing bacteria (bactericidal effect) or slowing and stopping their growth (bacteriostatic effect) and effect on different kinds of fungi, but they do not fight viruses; therefore, compounds of natural origin can find wide use as biocidal substances. Fungi grow in almost any environment, and they reproduce easily in dirt and wet spaces; thus, the development of antifungal PUR foams is focused on avoiding fungal infections and inhibiting growth. Polymers are susceptible to microorganism adhesion and, consequently, are treated and modified to inhibit fungal and bacterial growth. The ability of micro-organisms to grow on polyurethanes can cause human health problems during the use and storage of polymers, making it necessary to use additives that eliminate bacteria, viruses, and fungi.
Collapse
|
11
|
Kamaci M, Kaya İ. Fabrication of biodegradable hydrogels based on chitosan and poly(azomethine‐urethane) containing phenyl triazine for drug delivery. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Musa Kamaci
- Faculty of Engineering Piri Reis University Tuzla, Istanbul Turkey
- Polymer Synthesis and Analysis Lab., Department of Chemistry, Faculty of Science and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Lab., Department of Chemistry, Faculty of Science and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
| |
Collapse
|
12
|
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022; 14:polym14091672. [PMID: 35566843 PMCID: PMC9102459 DOI: 10.3390/polym14091672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Yie Hang Tan
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ki Yan Lam
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| |
Collapse
|
13
|
Abstract
Designed polyurethanes with degradable ester units all throughout the polymer backbone and quaternized ammonium units in the hard segment (tensile strength ∼30 MPa, elongation at break ∼1400%) show degradation in 35 days in industrial compost.
Collapse
Affiliation(s)
- Pin Hu
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Anil Kumar
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Reza Gharibi
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
14
|
Ghandforoushan P, Golafshan N, Babu Kadumudi F, Castilho M, Dolatshahi-Pirouz A, Orive G. Injectable and adhesive hydrogels for dealing with wounds. Expert Opin Biol Ther 2021; 22:519-533. [PMID: 34793282 DOI: 10.1080/14712598.2022.2008353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The development of wound dressing materials that combine healing properties, ability to self-repair the material damages, skin-friendly adhesive nature, and competent mechanical properties have surpassing functional importance in healthcare. Due to their specificity, hydrogels have been recognized as a new gateway in biological materials to treat dysfunctional tissues. The design and creation of injectable hydrogel-based scaffolds have extensively progressed in recent years to improve their therapeutic efficacy and to pave the way for their easy minimally invasive administration. Hence, injectable hydrogel biomaterials have been prepared to eventually translate into minimally invasive therapy and pose a lasting effect on regenerative medicine. AREAS COVERED This review highlights the recent development of adhesive and injectable hydrogels that have applications in wound healing and wound dressing. Such hydrogel materials are not only expected to improve therapeutic outcomes but also to facilitate the easy surgical process in both wound healing and dressing. EXPERT OPINION Wound healing seems to be an appealing approach for treating countless life-threatening disorders. With the average increase of life expectancy in human societies, an increase in demand for injectable skin replacements and drug delivery carriers for chronic wound healing is expected.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country Upv/ehu Paseo de La Universidad 7, Vitoria-Gasteiz, Spain.,Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (Ciber-bbn), Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,University of the Basque Country, University Institute for Regenerative Medicine and Oral Implantology - Uirmi (Upv/ehu-fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
15
|
Tajau R, Rohani R, Alias MS, Mudri NH, Abdul Halim KA, Harun MH, Mat Isa N, Che Ismail R, Muhammad Faisal S, Talib M, Rawi Mohamed Zin M, Izni Yusoff I, Khairul Zaman N, Asyila Ilias I. Emergence of Polymeric Material Utilising Sustainable Radiation Curable Palm Oil-Based Products for Advanced Technology Applications. Polymers (Basel) 2021; 13:polym13111865. [PMID: 34199699 PMCID: PMC8199994 DOI: 10.3390/polym13111865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
In countries that are rich with oil palm, the use of palm oil to produce bio-based acrylates and polyol can be the most eminent raw materials used for developing new and advanced natural polymeric materials involving radiation technique, like coating resins, nanoparticles, scaffold, nanocomposites, and lithography for different branches of the industry. The presence of hydrocarbon chains, carbon double bonds, and ester bonds in palm oil allows it to open up the possibility of fine-tuning its unique structures in the development of novel materials. Cross-linking, reversible addition-fragmentation chain transfer (RAFT), polymerization, grafting, and degradation are among the radiation mechanisms triggered by gamma, electron beam, ultraviolet, or laser irradiation sources. These radiation techniques are widely used in the development of polymeric materials because they are considered as the most versatile, inexpensive, easy, and effective methods. Therefore, this review summarized and emphasized on several recent studies that have reported on emerging radiation processing technologies for the production of radiation curable palm oil-based polymeric materials with a promising future in certain industries and biomedical applications. This review also discusses the rich potential of biopolymeric materials for advanced technology applications.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
- Correspondence: (R.T.); (R.R.)
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
- Correspondence: (R.T.); (R.R.)
| | - Mohd Sofian Alias
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Nurul Huda Mudri
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Khairul Azhar Abdul Halim
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Mohd Hamzah Harun
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Naurah Mat Isa
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Rosley Che Ismail
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Sharilla Muhammad Faisal
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Marina Talib
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Muhammad Rawi Mohamed Zin
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor 43000, Malaysia; (M.S.A.); (N.H.M.); (K.A.A.H.); (M.H.H.); (N.M.I.); (R.C.I.); (S.M.F.); (M.T.); (M.R.M.Z.)
| | - Izzati Izni Yusoff
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| | - Nadiah Khairul Zaman
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| | - Iqma Asyila Ilias
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia; (I.I.Y.); (N.K.Z.); (I.A.I.)
| |
Collapse
|
16
|
Saha P, Khomlaem C, Aloui H, Kim BS. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-hydroxybutyrate). Polymers (Basel) 2021; 13:1387. [PMID: 33923329 PMCID: PMC8123115 DOI: 10.3390/polym13091387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Biodegradable polyurethanes (PUs) were produced from castor oil (CO) and poly (3-hydroxybutyrate) diol (PHBD) using hexamethylene diisocyanate as a crosslinking agent. PHBDs of different molecular weights were synthesized through transesterification of bacterial PHB and ethylene glycol by changing the reaction time. The synthesized PHBDs were characterized in terms of Fourier transform infrared and proton nuclear magnetic resonance spectroscopy. A series of PUs at different NCO/OH and CO/PHBD ratios were prepared. The resulting CO/PHBD-based PUs were then characterized in terms of mechanical and thermal properties. Increasing PHBD content significantly increased the tensile strength of CO/PHBD-based PUs by 300% compared to neat CO-based PU. CO/PHBD-based PUs synthetized from short chain PHBD exhibited higher tensile strength compared to those produced from long chain PHBD. As revealed by scanning electron microscopy analysis, such improvement in stiffness of the resulting PUs is due to the good compatibility between CO and PHBD. Increasing PHBD content also increased the crystallinity of the resulting PUs. In addition, higher degradation rates were obtained for CO/PHBD-based PUs synthetized from long chain PHBD compared to neat CO PU and PUs produced from short chain PHBD.
Collapse
Affiliation(s)
| | | | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (P.S.); (C.K.); (H.A.)
| |
Collapse
|
17
|
Lee JH, Kim SH, Oh KW. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties. Polymers (Basel) 2021; 13:576. [PMID: 33672983 PMCID: PMC7918616 DOI: 10.3390/polym13040576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, most commercial polyols used in the production of polyurethane (PU) foam are derived from petrochemicals. To address concerns relating to environmental pollution, a sustainable resource, namely, castor oil (CO), was used in this study. To improve the production efficiency, sustainability, and compressive strength of PU foam, which is widely used as an impact-absorbing material for protective equipment, PU foam was synthesized with CO-based multifunctional polyols. CO-based polyols with high functionalities were synthesized via a facile thiol-ene click reaction method and their chemical structures were analyzed. Subsequently, a series of polyol blends of castor oil and two kinds of castor oil-based polyols with different hydroxyl values was prepared and the viscosity of the blends was analyzed. Polyurethane foams were fabricated from the polyol blends via a free-rising method. The effects of the composition of the polyol blends on the structural, morphological, mechanical, and thermal properties of the polyurethane foams were investigated. The results demonstrated that the fabrication of polyurethane foams from multifunctional polyol blends is an effective way to improve their compressive properties. We expect these findings to widen the range of applications of bio-based polyurethane foams.
Collapse
Affiliation(s)
- Joo Hyung Lee
- Department of Organic and Nano Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (J.H.L.); (S.H.K.)
| | - Seong Hun Kim
- Department of Organic and Nano Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (J.H.L.); (S.H.K.)
| | - Kyung Wha Oh
- Department of Fashion, College of Arts, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|