1
|
Baahmadi F, Abbasi-Asl H, Ghaedi M, Sabzehmeidani MM, Shokrollahi A. High-performance cellulose acetate fibers-loaded Alca layered double oxide adsorbents towards efficient elimination of anionic pollutants: Mechanism adsorption and RSM-CCD approach. Int J Biol Macromol 2025; 284:137788. [PMID: 39557258 DOI: 10.1016/j.ijbiomac.2024.137788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
In the present research, we investigate Congo red (CR) removal by layered double hydroxide and oxide AlCa on cellulose acetate (CA) fiber as anion-adsorbents in aqueous solution. The as-prepared composite was characterized by FE-SEM, XRD, FTIR, EDS-mapping and BET-BJH analyses. The CR adsorption ability on AlCa LDH/CA and AlCa LDO/CA adsorbents was evaluated. The removal property, dye adsorption and filtration properties of the AlCa LDO/CA composite were studied for removal CR based on central composite design (CCD) technique through investigating operational variables (temperature, adsorbent dosage, pH and contact time). The fabricated AlCa LDO/CA composite indicates a high removal efficiency up to 98.7 % for the CR removal in the 16 min. The data of the adsorption equilibrium were described by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms, and exhibited that AlCa LDH/CA fibers and AlCa LDO/CA fibers followed a pseudo-second-order kinetic model and Langmuir isotherm. The stability of Al-Ca-LDO/CA fibers nanocomposite was indicated that it was >95 % after eight cycles for removal of CR in the batch method on stirrer. The findings illustrated that appropriate AlCa LDO/CA fiber could be an efficient technique for CR elimination.
Collapse
Affiliation(s)
- Fatemeh Baahmadi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Hamid Abbasi-Asl
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mohammad Mehdi Sabzehmeidani
- Chemical Engineering Department, Yasouj University, Yasouj, Iran; Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | | |
Collapse
|
2
|
Du S, Cao S, Chen W, Xi J. Fibrous catalyst based on atomic Pd and N-doped holey graphene functionalized cotton fiber for continuous-flow reaction. Int J Biol Macromol 2024; 280:136049. [PMID: 39332556 DOI: 10.1016/j.ijbiomac.2024.136049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Continuous-flow catalysis bridges the gap between bench-scale laboratories and production-scale factories and thus should be a green and promising technology for the manufacture of value-added chemicals. Here, we present the construction of a continuous-flow catalytic system by integrating a tubular reactor with novel catalytic fibers, which are comprised of single-atomic Pd (Pd1) and nitrogen-doped holey graphene (NHG) functionalized cotton fibers (CFs). Due to the loosely packed structure, highly exposed dual-active sites (i.e., single-atomic PdN4 sites and activated C sites in the NHG carbocatalyst) of the CF@(Pd1/NHG) catalytic fibers, the corresponding flowing system exhibites remarkably high catalytic performance (activity and durability) and processing rate in organic reactions, including oxidative hydroxylation of phenylboronic acid and reduction of nitroarenes. Typically, the processing rate of the catalytic system toward 4-nitrophenol (a representative nitroarene) reduction can reach up to 2.46 × 10-3 mmol·mg-1·min-1, significantly higher than that of those packing catalysts reported in recent years.
Collapse
Affiliation(s)
- Shuaihu Du
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA 02139, United States
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Davoodbeygi Y, Askari M, Salehi E, Kheirieh S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117577. [PMID: 36848812 DOI: 10.1016/j.jenvman.2023.117577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In the era of rapid and conspicuous progress of water treatment technologies, combined adsorption and membrane filtration systems have gained great attention as a novel and efficient method for contaminant removal from aqueous phase. Further development of these techniques for water/wastewater treatment applications will be promising for the recovery of water resources as well as reducing the water tension throughout the world. This review introduces the state-of-the-art on the capabilities of the combined adsorption-membrane filtration systems for water and wastewater treatment applications. Technical information including employed materials, superiorities, operational limitations, process sustainability and upgradeing strategies for two general configurations i.e. hybrid (pre-adsorption and post-adsorption) and integrated (film adsorbents, low pressure membrane-adsorption coupling and membrane-adsorption bioreactors) systems has been surveyed and presented. Having a systematic look at the fundamentals of hybridization/integration of the two well-established and efficient separation methods as well as spotlighting the current status and prospectives of the combination strategies, this work will be valuable to all the interested researchers working on design and development of cutting-edge wastewater/water treatment techniques. This review also draws a clear roadmap for either decision making and choosing the best alternative for a specific target in water treatment or making a plan for further enhancement and scale-up of an available strategy.
Collapse
Affiliation(s)
- Yegane Davoodbeygi
- Department of Chemical Engineering, University of Hormozgan, Bandar Abbas, Iran; Nanoscience, Nanotechnology and Advanced Materials Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Mahdi Askari
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| | - Sareh Kheirieh
- Department of Chemical Engineering, University of Kashan, Kashan, Iran
| |
Collapse
|
4
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Ali BM, Abd El-Latif MM, Omer AM. Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies. JOURNAL OF POROUS MATERIALS 2023; 30:607-618. [DOI: 10.1007/s10934-022-01347-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 09/01/2023]
Abstract
AbstractIn this investigation, new porous adsorbent beads were formulated via the incorporation of graphene oxide (GO) into cellulose acetate beads (CA) for the adsorptive removal of methylene blue (MB) dye. The experimental results signified that the adsorption of MB dye increased with the increase in the GO ratio from 10 to 25%. In addition, the adsorption process obeyed PSO kinetic model and Langmuir isotherm model with a maximum adsorption capacity reaching 369.85 mg/g. More importantly, it was proposed that the adsorption mechanism of MB dye onto GO@CA proceeded via electrostatic interactions, H-bonding, van der Waals forces, n-π and π -π interactions. Besides, the fabricated beads exhibited an excellent ability to recycle and reuse after five successive cycles. In addition, there was a high selectivity of GO@CA beads towards MB molecules in the presence of co-existing cations such as Fe2+, Zn2+, Cu2+ and Ni2+.
Collapse
|
6
|
Matmin J, Ibrahim SI, Mohd Hatta MH, Ricky Marzuki R, Jumbri K, Nik Malek NAN. Starch-Derived Superabsorbent Polymer in Remediation of Solid Waste Sludge Based on Water–Polymer Interaction. Polymers (Basel) 2023; 15:polym15061471. [PMID: 36987251 PMCID: PMC10051928 DOI: 10.3390/polym15061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The purpose of this study is to assess water–polymer interaction in synthesized starch-derived superabsorbent polymer (S-SAP) for the treatment of solid waste sludge. While S-SAP for solid waste sludge treatment is still rare, it offers a lower cost for the safe disposal of sludge into the environment and recycling of treated solid as crop fertilizer. For that to be possible, the water–polymer interaction on S-SAP must first be fully comprehended. In this study, the S-SAP was prepared through graft polymerization of poly (methacrylic acid-co-sodium methacrylate) on the starch backbone. By analyzing the amylose unit, it was possible to avoid the complexity of polymer networks when considering S-SAP using molecular dynamics (MD) simulations and density functional theory (DFT). Through the simulations, formation of hydrogen bonding between starch and water on the H06 of amylose was assessed for its flexibility and less steric hindrance. Meanwhile, water penetration into S-SAP was recorded by the specific radial distribution function (RDF) of atom–molecule interaction in the amylose. The experimental evaluation of S-SAP correlated with high water capacity by measuring up to 500% of distilled water within 80 min and more than 195% of the water from solid waste sludge for 7 days. In addition, the S-SAP swelling showed a notable performance of a 77 g/g swelling ratio within 160 min, while a water retention test showed that S-SAP was capable of retaining more than 50% of the absorbed water within 5 h of heating at 60 °C. The water retention of S-SAP adheres to pseudo-second-order kinetics for chemisorption reactions. Therefore, the prepared S-SAP might have potential applications as a natural superabsorbent, especially for the development of sludge water removal technology.
Collapse
Affiliation(s)
- Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Correspondence: ; Tel.: +60-7-5535581
| | - Salizatul Ilyana Ibrahim
- Centre of Foundation Studies, Universiti Teknologi MARA Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, Johor Bahru 81750, Johor, Malaysia
| | - Raidah Ricky Marzuki
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Johor, Malaysia
| |
Collapse
|
7
|
Li G, Yin T, Sun Z, Wu W, Sun C, He C, Pan X, Liu L, Chang H. Kinetic optimization of odor adsorption with acetate fiber cloth prepared from waste cigarette filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157243. [PMID: 35817110 DOI: 10.1016/j.scitotenv.2022.157243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Odor pollution with NH3 as major contributor is a notorious issue that strongly influences our living environment. NH3 removal with acetate fiber cloth (AFC) prepared from waste cigarette filter is an economic feasible approach for simultaneous solid wastes disposal. Herein, waste cigarette filter was used to prepare AFC through hot-pressing approach, which was convinced to have good adsorption efficiency on NH3 due to large specific surface area. Effects of hot-pressing temperature, pressure and pressing time on AFC mechanical property and NH3 adsorption efficiencies were optimized by response surface method. As results, hot-pressing treatment improved the specific surface area of AFC to 9.530 m2/g, and thus enhanced NH3 adsorption efficiency to 68.73 % under hot-pressing temperature of 146 °C, pressure of 12.5 kPa and pressing time of 33 min. While the optimal tensile strength of AFC was obtained as 90.43 N under hot-pressing temperature of 140 °C, pressure of 15.0 kPa and pressing time of 30 min. The work provided an economic feasible approach for waste cigarette filter recycling and odor control.
Collapse
Affiliation(s)
- Gang Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China.
| | - Taikun Yin
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China
| | - Zhan Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China
| | - Wenbo Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Chaofeng Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China
| | - Xiaohui Pan
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China
| | - Liang Liu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Ministry of Agriculture & Rural Affairs, Zhengzhou 450002, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
8
|
Ye C, Pan Z, Shen Y. Facile Conversion of Polystyrene Waste into an Efficient Sorbent for Water Purification. Polymers (Basel) 2022; 14:polym14214477. [PMID: 36365471 PMCID: PMC9655115 DOI: 10.3390/polym14214477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, we convert a plastic waste, i.e., polystyrene (PS), into a sorbent by a simple sulfonation process. The sulfonation time was optimized and the structures of the resulting sulfonated polystyrene (SPS) was characterized by field emission scanning electron microscopy, energy-dispersive X-ray and contact angle tests. The results showed that the sulfonation time of 7 h can introduce abundant sulfonic groups and preserve the self-standing structure. Additionally, the SPS has a three-dimensional porous structure and hydrophilic surface because of the presence of numerous sulfonic groups, which could serve as effective binding sites for immobilizing varying pollutants. Furthermore, as a proof-of-concept, the adsorption performance of the SPS foams was evaluated using three pollutants, namely Pb2+, lysozyme and methylene blue. The adsorption isotherms were fitted by the Langmuir and Freundlich models, while the kinetics of the adsorption processes were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. It was found that the adsorption isotherms of Pb2+ and lysozyme can be better described by the Langmuir model, leading to maximum equilibrium adsorption uptakes of 10.5 and 15.7 mg g−1 for the adsorption of Pb2+ and lysozyme, respectively. Importantly, the pollutant-saturated SPS is readily regenerated by acid washing, and the recovered sorbents exhibit outstanding cyclic performance. The abundant availability of feedstock, facile preparation and regeneration processes render the SPS foams a promising sorbent for practical applications.
Collapse
|
9
|
Al-Faiyz YSS, Gouda M. Multi-Walled Carbon Nanotubes Functionalized with Hydroxamic Acid Derivatives for the Removal of Lead from Wastewater: Kinetics, Isotherm, and Thermodynamic Studies. Polymers (Basel) 2022; 14:polym14183870. [PMID: 36146015 PMCID: PMC9504277 DOI: 10.3390/polym14183870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022] Open
Abstract
Hydroxamic acids are recognized chelators for various metals; however, using them as functional groups on carbon nanotubes (CNTs) is rare. In this study, novel multi-walled carbon nanotubes (MWCNTs) functionalized with hydroxamic acid derivatives were developed. The MWCNTs were first oxidized, and the resulting product, MWCNT-COOH (A), was treated with oxalyl chloride to yield MWCNT-COCl. The functionalized MWCNTs were susceptible to reacting with the hydroxylamine derivatives of type R–NHOH and produced MWCNTs functionalized with the following hydroxamic acid derivatives (MWCNT-HA): MWCNT-CONOHMe (B), MWCNT-CONOHCOMe(C), and MWCNT-CONOHPh (D). The synthesized derivatives were confirmed by various techniques such as scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. In order to examine their chelation ability, these materials were examined as possible new adsorbents for harmful Pb(II) particles. The adsorption efficiency of the functionalized MWCNT adsorbents toward Pb(II) was investigated. The effects of the adsorbent dose, temperature, pH, and time on adsorption efficiency were considered, and adsorption boundaries that resulted in enhanced effectiveness were obtained. The developed materials were found to have extraordinary coordination sites, such as amine, hydroxyl, and carboxyl groups, which served as excellent chelating specialists for the Pb(II) particles. Thermodynamic and kinetic investigations revealed the unconstrained nature of the adsorption of Pb(II) by the developed MWCNT adsorbents at room temperature. The adsorption was noted to follow the pseudo-second-order and Langmuir isotherm models.
Collapse
|
10
|
Al-Nami SY, Al-Qahtani SD, Snari RM, Ibarhiam SF, Alfi AA, Aldawsari AM, El-Metwaly NM. Preparation of photoluminescent and anticorrosive epoxy paints immobilized with nanoscale graphene from sugarcane bagasse agricultural waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60173-60188. [PMID: 35419683 DOI: 10.1007/s11356-022-20111-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane bagasse agricultural waste has been one of the most common solid pollutants worldwide. Thus, introducing a simple method to convert sugarcane bagasse into value-added materials has been highly significant. Herein, we develop a simple and green strategy to reprocess sugarcane bagasse as a starting material for the preparation of graphene oxide nanosheets toward the preparation of novel photoluminescent, hydrophobic, and anticorrosive epoxy nanocomposite coatings integrated with lanthanide-doped aluminate nanoparticles. Environmentally friendly graphene oxide (GO) nanostructures were provided by a single-step preparation procedure from sugarcane bagasse (SCB) agricultural waste using ferrocene-based oxidation under muffled conditions. The oxidized SCB nanostructures were applied as a drier, anticorrosion, and crosslinking agent for epoxy coatings. Different concentrations of pigment phosphor were applied onto the epoxy coating. The generated epoxy-graphene-aluminate (EGA) paints were then coated onto mild steel. The hydrophobic properties and hardness as well as resistance to scratch of the EGA paints were examined. The transparency and colorimetric screening of the EGA nanocomposite paints were determined by the absorption spectral analysis and CIE Lab parameters. The luminescent translucent paints demonstrated a bright green emission at 520 nm when excited at 372 nm. The anticorrosion properties of the painted steel submerged in NaCl(aq) were inspected by the electrochemical impedance spectral (EIS) method. The EGA paints with phosphor (11% w/w) exhibited the most distinct anti-corrosion properties and long-persistent luminescence. The produced paints displayed high durability and photostability.
Collapse
Affiliation(s)
- Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Saham F Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Afrah M Aldawsari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Vatanpour V, Pasaoglu ME, Barzegar H, Teber OO, Kaya R, Bastug M, Khataee A, Koyuncu I. Cellulose acetate in fabrication of polymeric membranes: A review. CHEMOSPHERE 2022; 295:133914. [PMID: 35149008 DOI: 10.1016/j.chemosphere.2022.133914] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 05/22/2023]
Abstract
Developing biodegradable polymers to fabricate filtration membranes is one of the main challenges of membrane science and technology. Cellulose acetate (CA) membranes, due to their excellent film-forming property, high chemical and mechanical stability, high hydrophilicity, eco-friendly, and suitable cost, are extensively used in water and wastewater treatment, gas separation, and energy generation purposes. The CA is one of the first materials used to fabricate filtration membranes. However, in the last decade, the possibility of modification of CA to improve permeability and stability has attracted the researcher's attention again. This review is focused on the properties of cellulose derivatives and especially CA membranes in the fabrication of polymeric separation membranes in various applications such as filtration, gas separation, adsorption, and ion exchange membranes. Firstly, a brief introduction of CA properties and used molecular weights in the fabrication of membranes will be presented. After that, different configurations of CA membranes will be outlined, and the performance of CA membranes in several applications and configurations as the main polymer and as an additive in the fabrication of other polymer-based membranes will be discussed.
Collapse
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hossein Barzegar
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Recep Kaya
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Muhammed Bastug
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| |
Collapse
|
12
|
Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02171-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
El-Naggar ME, Abu Ali OA, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Saleh DI. Tailoring combinations of hydroxyapatite/cadmium selenite/graphene oxide based on their structure, morphology, and antibacterial activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02115-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Katouah HA, El-Sayed R, El-Metwaly NM. Solution blowing spinning technology and plasma-assisted oxidation-reduction process toward green development of electrically conductive cellulose nanofibers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56363-56375. [PMID: 34050912 DOI: 10.1007/s11356-021-14615-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/25/2021] [Indexed: 04/15/2023]
Abstract
Cellulose fibers have been one of the most common fibers due to their biodegradability, excellent mechanical properties, biocompatibility, high absorption ability, cheapness and renewability. In this study, novel, simple and green method is concerned with the production of multifunctional cellulose nanofibers (CNFs). Nanocomposites consisting of silver nanoparticles (AgNPs) and polyaniline (PANi) were in situ synthesized into plasma-pretreated cellulosic nanofibers fabricated by solution blowing spinning technique. The produced cellulose acetate nanofibers were then subjected to deacetylation followed by plasma-activation followed by a treatment with aniline and silver nitrate (AgNO3) in the presence of ammonium acetate. Plasma-assisted oxidation polymerization process of aniline into PANi associated with a reduction of Ag+ into AgNPs results in their permanent insolubility into the surface of the cellulose nanofibers. The morphologies and elemental contents were determined by polarizing optical microscope (POM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray patterns and scanning electron microscopy (SEM). Additionally, transmission electron microscope (TEM) was applied to explore the morphologies of silver nanoparticles and PANi showing particle diameter between 12 and 25 nm. The antimicrobial Ag NPs were formed from an aqueous medium of silver nitrate by taking the reduction ability advantage of the electrically active PANi. The immobilization of polyaniline and silver nanoparticles into the surface of the cellulose nanofibers enhanced its electrical conductivity. The produced CNFs demonstrated a high UV protection as well as antibacterial activity.
Collapse
Affiliation(s)
- Hanadi A Katouah
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Refat El-Sayed
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, Egypt.
| |
Collapse
|
15
|
Al-Saeedi SI, Al-Kadhi NS, Al-Senani GM, Almaghrabi OA, Nafady A. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds. Int J Biol Macromol 2021; 182:464-471. [PMID: 33838197 DOI: 10.1016/j.ijbiomac.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
Abstract
It is generally believed that the most challenging impediment for the utilization of cellulose acetate (CA) in the medical field is its hydrophobicity and disability to poison the harmful microbes. Therefore, in this contribution, we aimed to prepare an environmentally scaffold-based CA loaded with copper nanoparticles (CuONPs), which are expected to not only improve the hydrophilicity of the prepared nanofibers, but also have an effective ability to kill such harmful and infectious microbes that are abundant in wounds. The obtained results attested that the generated nanofibers became thicker with increasing the content of CuONPs in CA nanofibers. The roughness average increased from 143.2 to 157.1 nm, whereas the maximum height of the roughness (Rt) increased from 400.8 to 479.9 nm as going from the lowest to the highest content of CuONPs. Additionally, the contact angle of the prepared nanofibers decreased from 105.3° (CA alone) to 85.4° for CuONPs@CA. Significantly, biological studies revealed that cell viability and anti-bacterial potency were improved upon incorporating CuONPs into CA solution. Correspondingly, their inhibition zones reached 18 ± 3 mm, and 16 ± 2 mm for nanofibrous scaffolds having 12.0CuO@CA, besides raising the cell viability from 91.3 ± 4% to 96.4 ± 4% for 0.0CuO@CA, and 12.0CuO@CA, respectively, thereby implying that the fabricated CuONPs@CA nanocomposite has biocompatibility towards fibroblast cells. Thus, introducing biological activity into CA nanofibers via loading with CuONPs makes it suitable for numerous biomedical applications, particularly as an environmentally benign wound dressing fibers.
Collapse
Affiliation(s)
- Sameerah I Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Nada S Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|