1
|
Ren Y, Li Z, Li X, Su J, Li Y, Gao Y, Zhou J, Ji C, Zhu S, Yu M. The Influence of Thermal Parameters on the Self-Nucleation Behavior of Polyphenylene Sulfide (PPS) during Secondary Thermoforming. MATERIALS (BASEL, SWITZERLAND) 2024; 17:890. [PMID: 38399144 PMCID: PMC10890424 DOI: 10.3390/ma17040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhouyang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
| | - Xinguo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiayu Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yu Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianfeng Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
| | - Chengchang Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Pirela V, Elgoyhen J, Tomovska R, Martín J, Le CMQ, Chemtob A, Bessif B, Heck B, Reiter G, Müller AJ. Unraveling the Complex Polymorphic Crystallization Behavior of the Alternating Copolymer DMDS- alt-DVE. ACS APPLIED POLYMER MATERIALS 2023; 5:5260-5269. [PMID: 37469882 PMCID: PMC10353521 DOI: 10.1021/acsapm.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
A complex crystallization behavior was observed for the alternating copolymer DMDS-alt-DVE synthesized via thiol-ene step-growth polymerization. Understanding the underlying complex crystallization processes of such innovative polythioethers is critical for their application, for example, in polymer coating technologies. These alternating copolymers have polymorphic traits, resulting in different phases that may display distinct crystalline structures. The copolymer DMDS-alt-DVE was studied in an earlier work, where only two crystalline phases were reported: a low melting, L - Tm, and high melting, H - Tm phase. Remarkably, the H - Tm form was only achieved by the previous formation and melting of the L - Tm form. We applied calorimetric techniques encompassing seven orders of magnitude in scanning rates to further explore this complex polymorphic behavior. Most importantly, by rapidly quenching the sample to temperatures well below room temperature, we detected an additional polymorphic form (characterized by a very low melting phase, denoted VL - Tm). Moreover, through tailored thermal protocols, we successfully produced samples containing only one, two, or all three polymorphs, providing insights into their interrelationships. Understanding polymorphism, crystallization, and the resulting morphological differences can have significant implications and potential impact on mechanical resistance and barrier properties.
Collapse
Affiliation(s)
- Valentina Pirela
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Justine Elgoyhen
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Radmila Tomovska
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Jaime Martín
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
- Campus Industrial de Ferrol, CITENI, Esteiro, Universidade da Coruña, Ferrol 15403, Spain
| | - Cuong Minh Quoc Le
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Abraham Chemtob
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
3
|
Odarchenko Y, Kaźmierczak-Bałata A, Bodzenta J, Ferrari E, Soloviev M. AC/DC Thermal Nano-Analyzer Compatible with Bulk Liquid Measurements. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3799. [PMID: 36364575 PMCID: PMC9655476 DOI: 10.3390/nano12213799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nanocalorimetry, or thermal nano-analysis, is a powerful tool for fast thermal processing and thermodynamic analysis of materials at the nanoscale. Despite multiple reports of successful applications in the material sciences to study phase transitions in metals and polymers, thermodynamic analysis of biological systems in their natural microenvironment has not been achieved yet. Simply scaling down traditional calorimetric techniques, although beneficial for material sciences, is not always appropriate for biological objects, which cannot be removed out of their native biological environment or be miniaturized to suit instrument limitations. Thermal analysis at micro- or nano-scale immersed in bulk liquid media has not yet been possible. Here, we report an AC/DC modulated thermal nano-analyzer capable of detecting nanogram quantities of material in bulk liquids. The detection principle used in our custom-build instrument utilizes localized heat waves, which under certain conditions confine the measurement area to the surface layer of the sample in the close vicinity of the sensing element. To illustrate the sensitivity and quantitative capabilities of the instrument we used model materials with detectable phase transitions. Here, we report ca. 106 improvement in the thermal analysis sensitivity over a traditional DSC instrument. Interestingly, fundamental thermal properties of the material can be determined independently from heat flow in DC (direct current) mode, by using the AC (alternating current) component of the modulated heat in AC/DC mode. The thermal high-frequency AC modulation mode might be especially useful for investigating thermal transitions on the surface of material, because of the ability to control the depth of penetration of AC-modulated heat and hence the depth of thermal sensing. The high-frequency AC mode might potentially expand the range of applications to the surface analysis of bulk materials or liquid-solid interfaces.
Collapse
Affiliation(s)
- Yaroslav Odarchenko
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Anna Kaźmierczak-Bałata
- Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Jerzy Bodzenta
- Institute of Physics, Center for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Enrico Ferrari
- Department of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
4
|
Kai Tang, Liang Y, Xu R, Zhang Y, Xie Z, Hu B, Kang J, Cao Y, Xiang M. Effects of Molecular Structure on Crystallization Kinetics of Poly(ethylene terephthalate-co-neopentyl glycol). POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Sangroniz L, Jang YJ, Hillmyer MA, Müller AJ. The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers. J Chem Phys 2022; 156:144902. [DOI: 10.1063/5.0087782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of melt memory effects associated with semicrystalline polymers and the physical parameters involved in this process have been widely studied in the literature. However, a comprehensive understanding of the role of intermolecular interactions on melt memory is still being developed. For this purpose, we have considered aliphatic polyesters and we have incorporated amide and additional ester groups. Inserting these additional functional groups, the strength of the intermolecular interactions increases widening the melt memory effect. Not only the presence of the functional groups but also the position of these groups in the repeating unit plays a role in the melt memory effect as it impacts the strength of the intermolecular interactions in the crystals. The study of the effect of intermolecular interactions has been extended to successive self-nucleation and annealing thermal fractionation experiments to explore for the first time the role of intermolecular forces on the fractionation capacity of linear polymers. We demonstrated that intermolecular interactions act as intrinsic defects interrupting the crystallizable chain length, thus facilitating thermal fractionation. Overall, this work sheds light on the role of intermolecular interactions on the crystallization behavior of a series of aliphatic polyesters.
Collapse
Affiliation(s)
- Leire Sangroniz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Wang Z, Dong X, Cavallo D, Wang D, Müller AJ. Peculiar self‐nucleation behavior of a polybutene‐1/ethylene random copolymer. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zefan Wang
- Beijing National laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xia Dong
- Beijing National laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry University of Genova Genova Italy
| | - Dujin Wang
- Beijing National laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics Institute of Chemistry, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry University of the Basque Country UPV/EHU Donostia‐San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
7
|
Righetti MC, Di Lorenzo ML, Cinelli P, Gazzano M. Temperature dependence of the rigid amorphous fraction of poly(butylene succinate). RSC Adv 2021; 11:25731-25737. [PMID: 35478875 PMCID: PMC9036998 DOI: 10.1039/d1ra03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
In this contribution the temperature evolution of the constrained or rigid amorphous fraction (RAF) of biodegradable and biocompatible poly(butylene succinate) (PBS) was quantified, after detailed thermodynamic characterization by differential scanning calorimetry and X-ray diffraction analysis. At the glass transition temperature, around -40 °C, the rigid amorphous fraction in PBS is about 0.25. It decreases with increasing temperature and becomes zero in proximity of 25 °C. Thus, at room temperature and at the human body temperature, all the amorphous fraction is mobile. This information is important for the development of PBS products for various applications, including biomedical applications, since physical properties of the rigid amorphous fraction, for example mechanical and permeability properties, are different from those of the mobile amorphous fraction.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- CNR-IPCF, National Research Council - Institute for Chemical and Physical Processes Via Moruzzi 1 56124 Pisa Italy
| | - Maria Laura Di Lorenzo
- CNR-IPCB, National Research Council - Institute of Polymers, Composites and Biomaterials Via Campi Flegrei 24 80078 Pozzuoli Italy
| | - Patrizia Cinelli
- University of Pisa, Department of Civil and Industrial Engineering Largo Lazzarino 2 56122 Pisa Italy
| | - Massimo Gazzano
- CNR-ISOF, National Research Council - Institute of Organic Synthesis and Photoreactivity Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
8
|
Wang M, Li J, Shi G, Liu G, Müller AJ, Wang D. Suppression of the Self-Nucleation Effect of Semicrystalline Polymers by Confinement. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|