1
|
Abdulkadir BA, Jalil AA, Cheng CK, Setiabudi HD. Progress and Advances in Porous Silica-based Scaffolds for Enhanced Solid-state Hydrogen Storage: A Systematic Literature Review. Chem Asian J 2024; 19:e202300833. [PMID: 37997488 DOI: 10.1002/asia.202300833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Hydrogen plays a crucial role in the future energy landscape owing to its high energy density. However, finding an ideal storage material is the key challenge to the success of the hydrogen economy. Various solid-state hydrogen storage materials, such as metal hydrides, have been developed to realize safe, effective, and compact hydrogen storage. However, low kinetics and thermodynamic stability lead to a high working temperature and a low hydrogen sorption rate of the metal hydrides. Using scaffolds made from porous materials like silica to confine the metal hydrides is necessary for better and improved hydrogen storage. Therefore, this article reviews porous silica-based scaffolds as an ideal material for improved hydrogen storage. The outcome showed that confining the metal hydrides using scaffolds based on porous silica significantly increases their storage capacities. It was also found that the structural modifications of the silica-based scaffold into a hollow structure further improved the storage capacity and increased the affinity and confinement ability of the metal hydrides, which prevents the agglomeration of metal particles during the adsorption/desorption process. Hence, the structural modifications of the silica material into a fibrous and hollow material are recommended to be crucial for further enhancing the metal hydride storage capacity.
Collapse
Affiliation(s)
- B A Abdulkadir
- Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Pahang, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - C K Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - H D Setiabudi
- Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Pahang, Malaysia
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Pahang, Malaysia E-mail: address
| |
Collapse
|
2
|
Tombolesi S, Zanieri N, Bargnesi L, Mernini M, Lacarbonara G, Arbizzani C. A Sustainable Gel Polymer Electrolyte for Solid-State Electrochemical Devices. Polymers (Basel) 2023; 15:3087. [PMID: 37514476 PMCID: PMC10383274 DOI: 10.3390/polym15143087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nowadays, solid polymer electrolytes have attracted increasing attention for their wide electrochemical stability window, low cost, excellent processability, flexibility and low interfacial impedance. Specifically, gel polymer electrolytes (GPEs) are attractive substitutes for liquid ones due to their high ionic conductivity (10-3-10-2 S cm-1) at room temperature and solid-like dimensional stability with excellent flexibility. These characteristics make GPEs promising materials for electrochemical device applications, i.e., high-energy-density rechargeable batteries, supercapacitors, electrochromic displays, sensors, and actuators. The aim of this study is to demonstrate the viability of a sustainable GPE, prepared without using organic solvents or ionic liquids and with a simplified preparation route, that can substitute aqueous electrolytes in electrochemical devices operating at low voltages (up to 2 V). A polyvinyl alcohol (PVA)-based GPE has been cast from an aqueous solution and characterized with physicochemical and electrochemical methods. Its electrochemical stability has been assessed with capacitive electrodes in a supercapacitor configuration, and its good ionic conductivity and stability in the atmosphere in terms of water loss have been demonstrated. The feasibility of GPE in an electrochemical sensor configuration with a mediator embedded in an insulating polymer matrix (ferrocene/polyvinylidene difluoride system) has also been reported.
Collapse
Affiliation(s)
- Serena Tombolesi
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| | - Niccolò Zanieri
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| | - Luca Bargnesi
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| | - Martina Mernini
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| | - Giampaolo Lacarbonara
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| | - Catia Arbizzani
- Department of Chemistry Giacomo Ciamician, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Adam AA, Soleimani H, Dennis JO, Aldaghri OA, Alsadig A, Ibnaouf KH, Abubakar Abdulkadir B, Wadi IA, Cyriac V, Shukur MFBA. Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor. Molecules 2023; 28:molecules28083461. [PMID: 37110697 PMCID: PMC10146172 DOI: 10.3390/molecules28083461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The increased interest in the transition from liquid to solid polymer electrolytes (SPEs) has driven enormous research in the area polymer electrolyte technology. Solid biopolymer electrolytes (SBEs) are a special class of SPEs that are obtained from natural polymers. Recently, SBEs have been generating much attention because they are simple, inexpensive, and environmentally friendly. In this work, SBEs based on glycerol-plasticized methylcellulose/pectin/potassium phosphate (MC/PC/K3PO4) are investigated for their potential application in an electrochemical double-layer capacitor (EDLC). The structural, electrical, thermal, dielectric, and energy moduli of the SBEs were analyzed via X-ray diffractometry (XRD), Fourier transforms infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), transference number measurement (TNM), and linear sweep voltammetry (LSV). The plasticizing effect of glycerol in the MC/PC/K3PO4/glycerol system was confirmed by the change in the intensity of the samples' FTIR absorption bands. The broadening of the XRD peaks demonstrates that the amorphous component of SBEs increases with increasing glycerol concentration, while EIS plots demonstrate an increase in ionic conductivity with increasing plasticizer content owing to the formation of charge-transfer complexes and the expansion of amorphous domains in polymer electrolytes (PEs). The sample containing 50% glycerol has a maximal ionic conductivity of about 7.5 × 10-4 scm-1, a broad potential window of 3.99 V, and a cation transference number of 0.959 at room temperature. Using the cyclic voltammetry (CV) test, the EDLC constructed from the sample with the highest conductivity revealed a capacitive characteristic. At 5 mVs-1, a leaf-shaped profile with a specific capacitance of 57.14 Fg-1 was measured based on the CV data.
Collapse
Affiliation(s)
- Abdullahi Abbas Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Physics, Al-Qalam University Katsina, Katsina 820252, Nigeria
| | - Hassan Soleimani
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - John Ojur Dennis
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Osamah A Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Ahmed Alsadig
- CNR Nanotec, University Campus Ecotekne, 73100 Lecce, LE, Italy
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | | | - Ismael Abdalla Wadi
- Preparatory Year Unit, Prince Sattam Bin Abdulaziz University, Alkharj 16273, Saudi Arabia
- Physics Department, Faculty of Education, University of Nyala, Nyala P.O. Box 155, Sudan
| | - Vipin Cyriac
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Muhammad Fadhlullah Bin Abd Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
4
|
Bakar R, Darvishi S, Aydemir U, Yahsi U, Tav C, Menceloglu YZ, Senses E. Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes. ACS APPLIED ENERGY MATERIALS 2023; 6:4053-4064. [PMID: 37064412 PMCID: PMC10091352 DOI: 10.1021/acsaem.3c00310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T g), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance.
Collapse
Affiliation(s)
- Recep Bakar
- Department
of Material Science and Engineering, Koç
University, Sariyer, Istanbul 34450, Türkiye
| | - Saeid Darvishi
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Türkiye
| | - Umut Aydemir
- Department
of Chemistry, Koç University, Sariyer, Istanbul 34450, Türkiye
- Koc
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul 34450, Türkiye
| | - Ugur Yahsi
- Department
of Physics, Faculty of Science, Marmara
University, Kadikoy, Istanbul 34722, Türkiye
| | - Cumali Tav
- Department
of Physics, Faculty of Science, Marmara
University, Kadikoy, Istanbul 34722, Türkiye
| | - Yusuf Ziya Menceloglu
- Faculty of
Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Türkiye
| | - Erkan Senses
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Türkiye
- Koc
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul 34450, Türkiye
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri yolu, Sariyer, Istanbul 34450, Türkiye
| |
Collapse
|
5
|
Recent advances and prospects of K-ion conducting polymer electrolytes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Niu H, Ding M, Zhang N, Guo X, Guan P, Hu X. Ionic Liquid‐Modified Silicon Nanoparticles Composite Gel Polymer Electrolyte for High‐Performance Lithium Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Huizhe Niu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P.R. China
| | - Minling Ding
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P.R. China
| | - Nan Zhang
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710054 P.R. China
| | - Xulong Guo
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P.R. China
| | - Ping Guan
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P.R. China
| | - Xiaoling Hu
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P.R. China
| |
Collapse
|
7
|
Abubakar Abdulkadir B, Ojur Dennis J, Abdullahi Adam A, Mudassir Hassan Y, Asyiqin Shamsuri N, Shukur M. Preparation and characterization of solid biopolymer electrolytes based on polyvinyl alcohol/cellulose acetate blend doped with potassium carbonate (K2CO3) salt. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Adam AA, Ali MKM, Dennis JO, Soleimani H, Shukur MFBA, Ibnaouf KH, Aldaghri OA, Ibrahem MA, Abdel All NFM, Bashir Abdulkadir A. Innovative Methylcellulose‐Polyvinyl Pyrrolidone‐Based Solid Polymer Electrolytes Impregnated with Potassium Salt: Ion Conduction and Thermal Properties. Polymers (Basel) 2022; 14:polym14153055. [PMID: 35956570 PMCID: PMC9370478 DOI: 10.3390/polym14153055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this research, innovative green and sustainable solid polymer electrolytes (SPEs) based on plasticized methylcellulose/polyvinyl pyrrolidone/potassium carbonate (MC/PVP/K2CO3) were examined. The MC/PVP/K2CO3 SPE system with five distinct ethylene carbonate (EC) concentrations as a plasticizer was successfully designed. Frequency-dependent conductivity plots were used to investigate the conduction mechanism of the SPEs. Electrochemical potential window stability and the cation transfer number of the SPEs were studied via linear sweep voltammetry (LSV) and transference number measurement (TNM), respectively. Additionally, the structural behavior of the SPEs was analyzed using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) techniques. The SPE film complexed with 15 wt.% EC measured a maximum conductivity of 3.88 × 10−4 Scm−1. According to the results of the transference number examination, cations that record a transference number of 0.949 are the primary charge carriers. An EDLC was fabricated based on the highest conducting sample that recorded a specific capacitance of 54.936 Fg−1 at 5 mVs−1.
Collapse
Affiliation(s)
- Abdullahi Abbas Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- Department of Physics, Al-Qalam University Katsina, Katsina 820252, Nigeria
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - Mohammed Khalil Mohammed Ali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - John Ojur Dennis
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Hassan Soleimani
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Osamah A. Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Moez A. Ibrahem
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Naglaa F. M. Abdel All
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.A.); (M.A.I.); (N.F.M.A.A.)
| | - Abubakar Bashir Abdulkadir
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| |
Collapse
|
9
|
Dennis JO, Adam AA, Ali MKM, Soleimani H, Shukur MFBA, Ibnaouf KH, Aldaghri O, Eisa MH, Ibrahem MA, Bashir Abdulkadir A, Cyriac V. Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller. MEMBRANES 2022; 12:membranes12070706. [PMID: 35877909 PMCID: PMC9319390 DOI: 10.3390/membranes12070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NH4Cl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NH4Cl salt, and ZnO nanofiller interact with one another appreciably. EIS demonstrated the feasibility of achieving a conductivity of 3.13 × 10−4 Scm−1 for the optimum electrolyte at room temperature. Using the dielectric formalism technique, the dielectric properties, energy modulus, and relaxation time of NH4Cl in MC/PC/NH4Cl and MC/PC/NH4Cl/ZnO systems were determined. The contribution of chain dynamics and ion mobility was acknowledged by the presence of a peak in the imaginary portion of the modulus study. The LSV measurement yielded 4.55 V for the comparatively highest conductivity NCSPE.
Collapse
Affiliation(s)
- John Ojur Dennis
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Abdullahi Abbas Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Physics, Al-Qalam University Katsina, Katsina 820252, Nigeria
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - M. K. M. Ali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
- Correspondence: (A.A.A.); (M.K.M.A.)
| | - Hassan Soleimani
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
| | - Muhammad Fadhlullah Bin Abd. Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - K. H. Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - O. Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - M. A. Ibrahem
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; (K.H.I.); (O.A.); (M.H.E.); (M.A.I.)
| | - Abubakar Bashir Abdulkadir
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (J.O.D.); (H.S.); (M.F.B.A.S.); (A.B.A.)
- Centre of Innovative Nanoscience and Nanotechnology (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Vipin Cyriac
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
10
|
Adam AA, Soleimani H, Shukur MFBA, Dennis JO, Abdulkadir BA, Hassan YM, Yusuf JY, Shamsuri NAB. A new approach to understanding the interaction effect of salt and plasticizer on solid polymer electrolytes using statistical model and artificial intelligence algorithm. JOURNAL OF NON-CRYSTALLINE SOLIDS 2022; 587:121597. [DOI: 10.1016/j.jnoncrysol.2022.121597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Song X, Zhang Z, Shen Z, Zheng J, Liu X, Ni Y, Quan J, Li X, Hu G, Zhang Y. Facile Preparation of Drug-Releasing Supramolecular Hydrogel for Preventing Postoperative Peritoneal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56881-56891. [PMID: 34797976 DOI: 10.1021/acsami.1c16269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels have attracted widespread attention for breaking the bottlenecks faced during facile drug delivery. To date, the preparation of jelly carriers for hydrophobic drugs remains challenging. In this study, by evaporating ethanol to drive the formation of hydrogen bonds, hydrophilic poly(vinyl alcohol) (PVA) and certain hydrophobic compounds [luteolin (LUT), quercetin (QUE), and myricetin (MYR)] were rapidly prepared into supramolecular hydrogel within 10 min. The gelation performance of these three hydrogels changed regularly with the changing sequence of LUT, QUE, and MYR. An investigation of the gelation pathway of these hybrid gels reveals that the formation of this type of gel follows a simple supramolecular self-assembly process, called "hydrophobe-hydrophile crosslinked gelation". Because the hydrogen bond between PVA and the drug is noncovalent and reversible, the hydrogel has good plasticity and self-healing properties, while the drugs can be controllably released by tuning the output stimuli. Using a rat sidewall-cecum abrasion adhesion model, the as-prepared hydrogel was highly efficient and safe in preventing postsurgical adhesion. This work provides a useful archetypical template for researchers interested in the efficient delivery and controllable release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Yan J, Zhang C, Li H, Yang X, Wan L, Li F, Qiu K, Guo J, Duan W, Lambertz A, Lu W, Song D, Ding K, Flavel BS, Chen J. Stable Organic Passivated Carbon Nanotube-Silicon Solar Cells with an Efficiency of 22. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102027. [PMID: 34473427 PMCID: PMC8529485 DOI: 10.1002/advs.202102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Indexed: 05/05/2023]
Abstract
The organic passivated carbon nanotube (CNT)/silicon (Si) solar cell is a new type of low-cost, high-efficiency solar cell, with challenges concerning the stability of the organic layer used for passivation. In this work, the stability of the organic layer is studied with respect to the internal and external (humidity) water content and additionally long-term stability for low moisture environments. It is found that the organic passivated CNT/Si complex interface is not stable, despite both the organic passivation layer and CNTs being stable on their own and is due to the CNTs providing an additional path for water molecules to the interface. With the use of a simple encapsulation, a record power conversion efficiency of 22% is achieved and a stable photovoltaic performance is demonstrated. This work provides a new direction for the development of high-performance/low-cost photovoltaics in the future and will stimulate the use of nanotubes materials for solar cells applications.
Collapse
Affiliation(s)
- Jun Yan
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Cuili Zhang
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Han Li
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Xueliang Yang
- State Key Laboratory of Photovoltaic Materials & TechnologyYingli Green Energy Holding Co., Ltd.Baoding071051China
| | - Lu Wan
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Feng Li
- State Key Laboratory of Photovoltaic Materials & TechnologyYingli Green Energy Holding Co., Ltd.Baoding071051China
| | - Kaifu Qiu
- IEK5‐PhotovoltaicsForschungszentrum JülichWilhelm‐Johnen‐Strasse52425JülichGermany
| | - Jianxin Guo
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Weiyuan Duan
- IEK5‐PhotovoltaicsForschungszentrum JülichWilhelm‐Johnen‐Strasse52425JülichGermany
| | - Andreas Lambertz
- IEK5‐PhotovoltaicsForschungszentrum JülichWilhelm‐Johnen‐Strasse52425JülichGermany
| | - Wanbing Lu
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Dengyuan Song
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- State Key Laboratory of Photovoltaic Materials & TechnologyYingli Green Energy Holding Co., Ltd.Baoding071051China
| | - Kaining Ding
- IEK5‐PhotovoltaicsForschungszentrum JülichWilhelm‐Johnen‐Strasse52425JülichGermany
| | - Benjamin S. Flavel
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| | - Jianhui Chen
- Hebei Key Lab of Optic‐Electronic Information and MaterialsCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
13
|
Gu S, Liu J, Zheng J, Wang H, Wu J. Robust Antiwater and Anti-oil-fouling Double-Sided Tape Enabled by SiO 2 Reinforcement and a Liquefied Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43404-43413. [PMID: 34478274 DOI: 10.1021/acsami.1c12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Realizing simultaneous antiwater and anti-oil-fouling adhesion is extremely challenging owing to the solvated overlayer on the surface of substrates. Herein, we develop a supertough polyacrylate-based tape bearing SiO2 as a reinforcing filler and a solvent to liquefy the surface. The SiO2 reinforcement enhances the cohesion strength, while the liquefied surface not only expels the solvated overlayer but also improves the interfacial wettability and interaction. This material design imparts the double-sided tape with admirable antiwater and anti-oil-fouling adhesion performance, which far exceeds that of commercial tapes, as well as high transparency and long-term stability. In addition, we carry out an in-depth study on the adhesive mechanism for the tape and clarify the role of the solvent and the interaction between SiO2 and a polymer matrix. This work provides a novel strategy for designing antiwater and anti-oil-fouling adhesives with wide applications in various fields such as leakage repair, antiseep, underwater adhesion, building materials, and biological adhesives.
Collapse
Affiliation(s)
- Shiyu Gu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayi Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Zheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|