Las-Casas B, Arantes V. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging.
Int J Biol Macromol 2023:125057. [PMID:
37244346 DOI:
10.1016/j.ijbiomac.2023.125057]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Cellulose nanofibrils (CNFs) have emerged as a potential alternative to synthetic polymers in packaging applications owing to their oxygen and grease barrier performance and mechanical properties. However, the performance of CNF films is dependent on the intrinsic characteristics of fibers, which are changed during CNF isolation. Understanding the variations in these characteristics during CNF isolation is crucial for tailoring CNF film properties to achieve optimum performance in packaging applications. In this study, CNFs were isolated by endoglucanase-assisted mechanical ultra-refining. The changes in the intrinsic characteristics of CNFs and their impact on CNF films were systematically investigated as functions of the degree of defibrillation, enzyme loading, and reaction time using the design of experiments. Enzyme loading had a significant effect on the crystallinity index, crystallite size, surface area, and viscosity. Meanwhile, the degree of defibrillation greatly influenced the aspect ratio, degree of polymerization, and particle size. CNF films prepared from CNFs isolated under two optimized scenarios (casting and coating applications) exhibited high thermal stability (approximately 300 °C), high tensile strength (104-113 MPa), high oil resistance (kit n°12), and low oxygen transmission rate (1.00-3.17 cc·m-2.day-1). Therefore, endoglucanase pretreatment can obtain CNFs at lower energy consumption, resulting in films with higher transmittance, higher barrier performance, and lower surface wettability than the control samples without enzymatic pretreatment and other unmodified net CNF films reported in the literature without intensive loss of mechanical and thermal performance.
Collapse