1
|
Ragheb MA, Ragab MS, Mahdy FY, Elsebaie MS, Saber AM, AbdElmalak YO, Elsafoury RH, Elatreby AA, Rochdi AM, El-Basyouni AW, Shoukry MM, Eldeeb MA, El-Sherif RM, Abdelhamid IA, Salah-Eldin DS. Folic acid-modified chitosan nanoparticles for targeted delivery of a binuclear Co(II) complex in cancer therapy. Int J Biol Macromol 2025:144034. [PMID: 40345288 DOI: 10.1016/j.ijbiomac.2025.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
A salient challenge in cancer chemotherapy is the successful delivery of drugs to cancer cells. Therapeutic agents can be delivered to cancer cells in a targeted and efficient manner using nanoparticles (NPs). We present the molecular characterization of a novel binuclear Co(II) complex with octahedral geometry based on Schiff base from dehydroacetic acid and piperazine derivatives. DNA and BSA binding interactions were investigated using UV-Vis spectroscopy and gel electrophoresis. In vitro cytotoxicity of Co(II) complex was assessed against microbes and human cells (Cancer: MDA-MB-231, MCF7, A375, HepG2; Non-cancerous: HSF, WI-38) using well diffusion and MTT assays. Chitosan decorated with folic acid (CS-FA) was fabricated to encapsulate Co(II) complex, which may serve as a nano-targeted drug delivery system, to dampen its adverse effects on non-cancerous cells. TEM and DLS analysis confirmed nano-sized and stable monodisperse nanosuspension of both (CS-FA) and (CS-FA-Co(II) complex) systems. CS-FA-Co(II) complex NPs exhibited an 8.3-fold increase in cytotoxicity against folate-receptor-positive MDA-MB-231 cells, while remaining safe for folate-receptor-negative HSF cells. They also induced cell cycle arrest, inhibited migration, and triggered apoptosis by modulating Bax, Bcl-2, caspase-3, and CDH1. These findings highlight CS-FA NPs as a promising targeted delivery system for Co(II) complex-based cancer therapeutic agents, offering improved efficacy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt.
| | - Mona S Ragab
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Fatma Y Mahdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed S Elsebaie
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Youstina O AbdElmalak
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal A Elatreby
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed W El-Basyouni
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed M Shoukry
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed A Eldeeb
- Department of Chemistry, Illinois State University, IL, United States.
| | - Rabab M El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Faculty of Postgraduate Studies for Nanotechnology, Cairo University, P.O. 12588, Giza, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt.
| | - Doaa S Salah-Eldin
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| |
Collapse
|
2
|
Vencato AA, Clerici NJ, Rigotti M, Branco CS, Carra S, Malvessi E, Brandelli A. Biocompatible PVA/gelatin and PVA/starch nanofibers incorporating sodium lactobionate obtained from enzymatic synthesis. Int J Biol Macromol 2025; 309:143112. [PMID: 40222529 DOI: 10.1016/j.ijbiomac.2025.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
This study reports the first incorporation of sodium lactobionate (SL), bioproduced via enzymatic synthesis using Zymomonas mobilis, into electrospun nanofibers. SL was combined with poly(vinyl alcohol) (PVA) and either gelatin or starch to form the nanofibers, which exhibited uniform structures with diameters ranging from 297.4 to 367.5 nm. The physical, thermal, and mechanical properties of the nanofibers were influenced by the presence of SL, gelatin, or starch. The formulation with gelatin and SL demonstrated the most significant antioxidant activity, achieving 62.59 % (1360.88 μM TEAC) in the ABTS assay. The nanofibers showed low hemolysis rate (0.08 % to 3.18 %) and were classified as biocompatible. No significant effects on cell viability, ROS production, NO levels, or dsDNA release were observed up to 1000 μg/mL over 24 h, indicating their safety profile. PVA/gelatin/SL nanofibers show promising potential as carriers for bioactive compounds in pharmaceutical, food, chemical, and nanotechnology applications.
Collapse
Affiliation(s)
- Aline Aniele Vencato
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Naiara Jacinta Clerici
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Marina Rigotti
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul, PO Box 1352, 95001-970 Caxias do Sul, Brazil
| | - Cátia Santos Branco
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul, PO Box 1352, 95001-970 Caxias do Sul, Brazil
| | - Sabrina Carra
- Laboratório de Bioprocessos, Instituto de Biotecnologia, Universidade de Caxias do Sul, PO Box 1352, 95001-970 Caxias do Sul, Brazil
| | - Eloane Malvessi
- Laboratório de Bioprocessos, Instituto de Biotecnologia, Universidade de Caxias do Sul, PO Box 1352, 95001-970 Caxias do Sul, Brazil
| | - Adriano Brandelli
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
| |
Collapse
|
3
|
Topuz F, Uyar T. Recent developments in nanofiber-based fast-disintegrating drug delivery systems. Expert Opin Drug Deliv 2025:1-13. [PMID: 40285755 DOI: 10.1080/17425247.2025.2497831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Fast-disintegrating electrospun fibers are emerging as innovative systems for oral drug delivery. These fibers possess a high surface area, porosity, and customizable hydrophilicity, which facilitates quick drug release by disintegrating rapidly in biological fluids or upon contact with water. AREAS COVERED Hydrophilic polymers and cyclodextrins (CDs), either separately or in combination, are frequently utilized to accelerate the disintegration of electrospun fibers, enhance the solubility of hydrophobic drugs, and improve drug bioavailability, leading to better therapeutic outcomes. Toward this goal, a systematic literature search was conducted to identify experimental studies (2019-2025) in Web of Science, Google Scholar, and Scopus using the keywords ('fast-disintegrating' OR 'fast-dissolving') AND ('electrospinning' OR 'electrospun') AND ('delivery' OR 'release'). EXPERT OPINION This review examines recent advancements over the past five years in the development of fast-disintegrating drug delivery fibers. It analyzes fiber composition, structural modifications, drug encapsulation routes, and their impact on drug release for oral mucosal delivery. Additionally, it addresses the challenges faced and outlines future directions in the field.
Collapse
Affiliation(s)
- Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer, Istanbul, Turkey
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
İğdeli G, Fritzen L, Pietrzik CU, Temel BA. Folic acid-conjugated amphiphilic copolymers for the enhanced delivery of donepezil: synthesis, characterization and blood-brain barrier permeability in a co-culture model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-16. [PMID: 40195847 DOI: 10.1080/09205063.2025.2486863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with limited therapeutic options, largely due to challenges in delivering drugs across the blood-brain barrier (BBB). In this study, we synthesized folic acid (FA) conjugated amphiphilic copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization to enhance the targeted delivery of donepezil (DZP) to the brain. The copolymers were self-assembled into micelles and extensively characterized for their size, zeta potential, and stability using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The micelles were further evaluated for their ability to cross an in vitro BBB model and their cellular uptake by brain endothelial cells. FA conjugation was employed to exploit the folate receptor-mediated transport mechanism, which has shown potential for improving drug delivery across the BBB. This study demonstrates the feasibility of using FA functionalized micelles as a targeted delivery system, offering potential advancements in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Gizem İğdeli
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| | - Laura Fritzen
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Binnur Aydogan Temel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul, Türkiye
| |
Collapse
|
5
|
Chakraborty A, Rani A, Sinha P, Sarma S, Agarwal V, Prasun A, Jha HC, Sarma TK. Guanosine Monophosphate Induced Solubilization of Folic Acid Leading to Hydrogel Formation for Targeted Delivery of Hydrophilic and Hydrophobic Drugs. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11848-11860. [PMID: 39939122 DOI: 10.1021/acsami.4c21306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Hydrogels are emerging as one of the most sought-after drug carriers due to their biocompatibility, high water content mimicking tissue-like environment, injectability, and stimuli responsiveness. Sustained drug release accompanied by targeted delivery to cancer cells can abate numerous adverse side effects of conventional chemotherapy. Folate receptors are overexpressed in various cancer cells, and their high binding affinity to folic acid (FA) makes folic acid-anchored drug carriers a specific targeting entity. Reports of folic acid-based hydrogels are still scarce, owing to their low solubility in water. In this study, we present a simple approach to generate a self-assembled supramolecular hydrogel by employing an amphiphilic low molecular weight gelator (LMWG), guanosine monophosphate (GMP), which noncovalently interacts and coassembles with FA. The hydrogel shows biocompatibility, thermoreversibility, self-healing, injectability, thixotropy, and self-adhesive properties. The hydrogel could encapsulate and release both hydrophilic (doxorubicin) and hydrophobic (curcumin) drugs in a sustained manner. In vitro studies on cancer cells showed that encapsulating the drugs within the hydrogel matrix resulted in enhanced uptake by the cancer cells, thereby increasing their therapeutic efficacy through upregulating tumor suppressor, apoptotic gene expression, and inhibiting cell proliferation markers. Thus, a straightforward fabrication procedure, cost-effectiveness, and treatment potency make the FA-GMP hydrogel a promising drug carrier for practical use in biomedical applications.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Annu Rani
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pramesh Sinha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Suryakamal Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Aditya Prasun
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
6
|
Farzan M, Soleimannejad M, Shariat S, Heidari Sureshjani M, Gholipour A, Ashrafi Dehkordi K, Alerasoul Dehkordi SMR, Farzan M. A biomimetic injectable chitosan/alginate hydrogel biocopmosites encapsulating selenium- folic acid nanoparticles for regeneration of spinal cord injury: An in vitro study. Int J Biol Macromol 2025; 288:138682. [PMID: 39672404 DOI: 10.1016/j.ijbiomac.2024.138682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Spinal cord injury (SCI) poses significant challenges to regenerative medicine due to its limited self-repair capabilities. In this study, we engineered a biomimetic injectable hydrogel using modified chitosan and alginate biopolymers encapsulating selenium-folic acid nanoparticles (Se-FA NPs) to facilitate SCI regeneration. The hydrogel exhibited a unique porous structure attributed to the incorporation of nanofiber fragments, enhancing its biocompatibility and bioactivity. Through a series of in vitro evaluations, including cell viability assays, proliferation studies, gene expression analysis, we assessed the hydrogel's cytocompatibility and its potential for supporting neural cell growth. Our results demonstrate the promising efficacy of the hydrogel in providing a conducive microenvironment for neural tissue regeneration. Moreover, the sustained release of Se-FA NPs from the hydrogel system offers neuroprotective, antioxidative, and anti-inflammatory benefits crucial for SCI therapy. Overall, our biomimetic hydrogel biocomposites hold great potential as a therapeutic strategy for promoting spinal cord regeneration, highlighting their significance in advancing the field of regenerative medicine.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mostafa Soleimannejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Saeedeh Shariat
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Heidari Sureshjani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abolfazl Gholipour
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Gao Z, Mansor MH, Howard F, MacInnes J, Zhao X, Muthana M. Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal-Photodynamic Chemotherapy Against Breast Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:221. [PMID: 39940197 PMCID: PMC11820260 DOI: 10.3390/nano15030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) exhibit exceptional photothermal conversion efficiency under 808 nm near-infrared (NIR) laser irradiation, making them valuable for cancer phototherapy. However, the effectiveness of PDT is limited in hypoxic tumour environments, which are common in many breast cancer types, due to its reliance on local oxygen levels. Moreover, single-modality approaches, including phototherapy, often prove insufficient for complete tumour elimination, despite their therapeutic strength. In this paper, a microfluidic-assisted approach was used to create multifunctional silk-based nanoparticles (SFNPs) encapsulating the chemotherapeutic drug Epirubicin (EPI), the PTT/PDT agent CuS, and the heat-activated, oxygen-independent alkyl radical generator AIPH for combined chemotherapy, PTT, and PDT, with a polydopamine (PDA) coating for enhanced photothermal effects and surface-bound folic acid (FA) for targeted delivery in breast cancer treatment. The synthesised CuS-EPI-AIPH@SF-PDA-FA nanoparticles achieved a controlled size of 378 nm, strong NIR absorption, and high photothermal conversion efficiency. Under 808 nm NIR irradiation, these nanoparticles selectively triggered the release of alkyl radicals and EPI, improving intracellular drug levels and effectively killing various breast cancer cell lines while demonstrating low toxicity to non-cancerous cells. We demonstrate that novel core-shell CuS-EPI-AIPH@SF-PDA-FA NPs have been successfully designed as a multifunctional nanoplatform integrating PTT, PDT, and chemotherapy for targeted, synergistic breast cancer treatment.
Collapse
Affiliation(s)
- Zijian Gao
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| | - Muhamad Hawari Mansor
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK;
| | - Faith Howard
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| | - Jordan MacInnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK;
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Division of Clinical Medicine, University of Sheffield, Beech Hill Road, Sheffield S1 2RX, UK; (Z.G.); (M.H.M.); (F.H.)
| |
Collapse
|
8
|
Bernardi B, Malafatti JOD, Moreira AJ, de Almeida Nascimento AC, Lima JB, Vermeersch LAF, Paris EC. Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release. DISCOVER NANO 2025; 20:8. [PMID: 39808365 PMCID: PMC11732827 DOI: 10.1186/s11671-024-04161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m2 g-1), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of Staphylococcus aureus bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L-1. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.
Collapse
Affiliation(s)
- Bárbara Bernardi
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - João Otávio Donizette Malafatti
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Andressa Cristina de Almeida Nascimento
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Juliana Bruzaca Lima
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Lilian Aparecida Fiorini Vermeersch
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Elaine Cristina Paris
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
9
|
Ceylan Z, Uzun O, Karaismailoğlu MC, Meral R, Yildiz HB. The revealing of the Cyto-genotoxic properties (Allium and MTT) and the effect of chicken meat quality of characterized zein-eugenol nanofibers. Food Chem 2025; 462:141043. [PMID: 39226646 DOI: 10.1016/j.foodchem.2024.141043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Electrospun zein-based eugenol nanofibers (ZEnF) with diameters (148.19-631.52 nm) were fabricated. Thermal degradation was found as <15 % until 300 °C while the nanofiber diffraction pattern presented three main peaks among the 5o and 45o positions. ZEnF was not only evaluated as non-toxic to cells but also possessed anticancer characteristics revealing with the MCF-7 cell line at 800 μg/mL (reduction: 18.08 %) and 1600 μg/mL (reduction: 41.64 %). Allium tests revealed that ZEnF did not have any adverse impact on the health status (chromosomes-DNA) of exposed organisms. Following the nanofiber coating for chicken meat parts (thigh and breast), it was observed up to 1.25 log CFU/g limitation in total viable bacteria counts (p < 0.05). The sensory score (difference: 3.64 in 10 points scoring on the 6th day of the cold storage) and odor score of chicken meat samples were found to be as higher than control samples (p < 0.05).
Collapse
Affiliation(s)
- Zafer Ceylan
- Bartin University, Science Faculty, Department of Molecular Biology and Genetics/Biotechnology, 74000 Bartin, Turkey.
| | - Orhan Uzun
- Ankara University, Science Faculty, Department of Physics, 06100 Ankara, Turkey; Bartin University, Bartin 74100, Turkey
| | - Mehmet Cengiz Karaismailoğlu
- Bartin University, Science Faculty, Department of Molecular Biology and Genetics/Molecular Biology, 74000 Bartin, Turkey
| | - Raciye Meral
- Van Yüzüncü Yıl University, Faculty of Engineering, Department of Food Engineering, 65000 Tuşba, Van, Turkey
| | - Huseyin Bekir Yildiz
- Bartin University, Mechanical Engineering Department, Faculty of Engineering, Architecture and Design, 74100 Bartin, Turkey
| |
Collapse
|
10
|
Vencato AA, Clerici NJ, Juchem ALM, Veras FF, Rolla HC, Brandelli A. Electrospun nanofibers incorporating lactobionic acid as novel active packaging materials: biological activities and toxicological evaluation. DISCOVER NANO 2024; 19:135. [PMID: 39215943 PMCID: PMC11365877 DOI: 10.1186/s11671-024-04084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, lactobionic acid (LBA) was incorporated into poly(vinyl alcohol) (PVA) and poly(ε-caprolactone) (PCL) by electrospinning. The antimicrobial effects of the nanofibers were tested using the agar diffusion method. Only the PVA formulations showed antimicrobial activity against Staphylococcus aureus. The PVA and PCL nanofibers containing LBA showed antioxidant activity ranging from 690.33 to 798.67 µM TEAC when tested by the ABTS method. The characterization of nanofibers was performed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and mechanical analysis. The nanofibers showed a uniform morphology and their average diameters ranged from 295.5 to 2778.2 nm. The LBA addition induced a decrease in the enthalpy of fusion (ΔHm) of PVA and PCL nanofibers, while the Young's modulus was reduced from 20 to 10 MPa in PCL and PCL-LBA nanofibers, respectively. No relevant differences were observed between the FTIR spectra of the control nanofibers and the nanofibers containing LBA. All nanofibers presented hemolysis rate below 2%, thus can be considered as non-hemolytic materials. Further toxicological assessment was performed with the selected formulation PVA10 + LBA. The evaluations by mutagenicity assay, cell survival measurement, cell viability analysis and agar diffusion cytotoxicity test indicated that there are no significant toxic effects. Electrospun nanofibers PVA-LBA and PCL-LBA were successfully produced, showing good thermal and mechanical properties and non-toxic effects. Furthermore, the nanofibers showed antimicrobial activity and antioxidant activity. The findings of this study indicate that PVA and PCL electrospun nanofibers incorporating LBA are promising for use in packaging applications.
Collapse
Affiliation(s)
- Aline Aniele Vencato
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Naiara Jacinta Clerici
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Flavio Fonseca Veras
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Adriano Brandelli
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
11
|
Rosales S, Hernández-Gutiérrez R, Oaxaca A, López Z, Casillas N, Knauth P, Quintero LH, Paz JA, Cholico F, Velásquez C, Cano ME. The Fluorescent Cell Line SW620-GFP Is a Valuable Model to Monitor Magnetic Hyperthermia. Bioengineering (Basel) 2024; 11:638. [PMID: 39061720 PMCID: PMC11274270 DOI: 10.3390/bioengineering11070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, the cell line SW620-GFP has been used in a complete magnetic hyperthermia assay, from the preparation of the ferrofluid with folate-coated iron oxide nanoparticles to in vivo experiments. The physical and chemical characterization of the nanoparticles evidenced their superparamagnetic behaviour, an average diameter of 12 ± 4 nm, a 2 nm coat thickness, and a high-power loss density. The main innovation of the work is the exclusive capability of viable SW620-GFP cells to emit fluorescence, enabling fast analysis of both, cell viability in vitro with an epifluorescence microscope and tumour size and shape in vivo in a non-invasive manner using the iBox technology. Moreover, with this imaging technique, it was possible to demonstrate the successful tumour size reduction in mice applying magnetic hyperthermia three times a week over 3 weeks.
Collapse
Affiliation(s)
- Saray Rosales
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragan 1421, Guadalajara 44430, Jalisco, Mexico; (S.R.); (N.C.)
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas 800, Guadalajara 44270, Jalisco, Mexico;
| | - Alma Oaxaca
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas 800, Guadalajara 44270, Jalisco, Mexico;
| | - Zaira López
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (P.K.); (J.A.P.); (F.C.)
| | - Norberto Casillas
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragan 1421, Guadalajara 44430, Jalisco, Mexico; (S.R.); (N.C.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (P.K.); (J.A.P.); (F.C.)
| | - Luis H. Quintero
- Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Periférico Norte 799, Col. Los Belenes, Zapopan 45100, Jalisco, Mexico;
| | - José A. Paz
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (P.K.); (J.A.P.); (F.C.)
| | - Francisco Cholico
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (P.K.); (J.A.P.); (F.C.)
| | - Celso Velásquez
- Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara—Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
| | - Mario E. Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Jalisco, Mexico; (Z.L.); (P.K.); (J.A.P.); (F.C.)
| |
Collapse
|
12
|
Bendre A, Somasekhara D, Nadumane VK, Sriram G, Bilimagga RS, Kurkuri MD. Design and Application of Microfluidic Capture Device for Physical-Magnetic Isolation of MCF-7 Circulating Tumor Cells. BIOSENSORS 2024; 14:308. [PMID: 38920612 PMCID: PMC11201624 DOI: 10.3390/bios14060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Circulating tumor cells (CTCs) are a type of cancer cell that spreads from the main tumor to the bloodstream, and they are often the most important among the various entities that can be isolated from the blood. For the diagnosis of cancer, conventional biopsies are often invasive and unreliable, whereas a liquid biopsy, which isolates the affected item from blood or lymph fluid, is a less invasive and effective diagnostic technique. Microfluidic technologies offer a suitable channel for conducting liquid biopsies, and this technology is utilized to extract CTCs in a microfluidic chip by physical and bio-affinity-based techniques. This effort uses functionalized magnetic nanoparticles (MNPs) in a unique microfluidic chip to collect CTCs using a hybrid (physical and bio-affinity-based/guided magnetic) capturing approach with a high capture rate. Accordingly, folic acid-functionalized Fe3O4 nanoparticles have been used to capture MCF-7 (breast cancer) CTCs with capture efficiencies reaching up to 95% at a 10 µL/min flow rate. Moreover, studies have been conducted to support this claim, including simulation and biomimetic investigations.
Collapse
Affiliation(s)
- Akhilesh Bendre
- Centre for Research in Functional Materials, JAIN (Deemed-to-be University), Bengaluru 562112, Karnataka, India;
| | - Derangula Somasekhara
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be-University), JC Road, 34, 1st Cross Road, Sudharna Nagar, Bengaluru 560027, Karnataka, India; (D.S.); (V.K.N.)
| | - Varalakshmi K. Nadumane
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be-University), JC Road, 34, 1st Cross Road, Sudharna Nagar, Bengaluru 560027, Karnataka, India; (D.S.); (V.K.N.)
| | - Ganesan Sriram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Ramesh S. Bilimagga
- Department of Minimal Access, GI and Bariatric Surgery, Fortis Hospital, 14, Cunningham Road, Bengaluru 560052, Karnataka, India;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials, JAIN (Deemed-to-be University), Bengaluru 562112, Karnataka, India;
- Interdisciplinary Research Centre (IDRC), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
13
|
Ercelik M, Tekin C, Parin FN, Mutlu B, Dogan HY, Tezcan G, Aksoy SA, Gurbuz M, Yildirim K, Bekar A, Kocaeli H, Taskapilioglu MO, Eser P, Tunca B. Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release. Int J Biol Macromol 2023; 253:126722. [PMID: 37673167 DOI: 10.1016/j.ijbiomac.2023.126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma (GB) has susceptibility to post-surgical recurrence. Therefore, local treatment methods are required against recurrent GB cells in the post-surgical area. In this study, we developed a nanofiber-based local therapy against GB cells using Oleuropein (OL), and rutin and their combinations with Temozolomide (TMZ). The polylactic acid (PLA) core-shell nanofiber webs were encapsulated with OL (PLAOL), rutin (PLArutin), and TMZ (PLATMZ) by an electrospinning process. A SEM visualized the morphology and the total immersion method determined the release characteristics of PLA webs. Real-time cell tracking analysis for cell growth, dual Acridine Orange/Propidium Iodide staining for cell viability, a scratch wound healing assay for migration capacity, and a sphere formation assay for tumor spheroid aggressiveness were used. All polymeric nanofiber webs had core-shell structures with an average diameter between 133 ± 30.7-139 ± 20.5 nm. All PLA webs promoted apoptotic cell death, suppressed cell migration, and spheres growth (p < 0.0001). PLAOL and PLATMZ suppressed GB cell viability with a controlled release that increased over 120 h, while PLArutin caused rapid cell inhibition (p < 0.0001). Collectively, our findings suggest that core-shell nano-webs could be a novel and effective therapeutic tool for the controlled release of OL and TMZ against recurrent GB cells.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Fatma Nur Parin
- Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Busra Mutlu
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey; Central Research Laboratory, Bursa Technical University, Bursa, Turkey
| | - Hazal Yilmaz Dogan
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey; Faculty of Medicine Experimental Animal Breeding and Research Unit, Bursa Uludag University, Bursa, Turkey
| | - Melisa Gurbuz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Kenan Yildirim
- Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | | | - Pinar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
14
|
Sadri E, Khoee S, Moayeri S, Haji Ali B, Pirhajati Mahabadi V, Shirvalilou S, Khoei S. Enhanced anti-tumor activity of transferrin/folate dual-targeting magnetic nanoparticles using chemo-thermo therapy on retinoblastoma cancer cells Y79. Sci Rep 2023; 13:22358. [PMID: 38102193 PMCID: PMC10724238 DOI: 10.1038/s41598-023-49171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Malignant neoplasms are one of the main causes of death, especially in children, on a global scale, despite strenuous efforts made at advancing both diagnostic and therapeutic modalities. In this regard, a new nanocarrier Vincristine (VCR)-loaded Pluronic f127 polymer-coated magnetic nanoparticles conjugated with folic acid and transferrin (PMNP-VCR-FA-TF) were synthesized and characterized by various methods. The cytotoxicity of these nanoparticles was evaluated in vitro and ex vivo conditions. The in vitro anti-tumor effect of the nanoparticles was evaluated by colony formation assay (CFA) and reactive oxygen species (ROS) in Y79 cell line. The results showed that nanoparticles with two ligands conferred greater toxicity toward Y79 cancer cells than ARPE19 normal cells. Under an alternating magnetic field (AMF), these nanoparticles demonstrated a high specific absorption rate. The CFA and ROS results indicated that the AMF in combination with PMNP-VCR-FA-TF conferred the highest cytotoxicity toward Y79 cells compared with other groups (P < 0.05). PMNP-VCR-FA-TF could play an important role in converting externally applied radiofrequency energy into heat in cancer cells. The present study confirmed that dual targeting chemo-hyperthermia using PMNP-VCR-FA-TF was significantly more effective than hyperthermia or chemotherapy alone, providing a promising platform for precision drug delivery as an essential component in the chemotherapy of retinoblastoma.
Collapse
Affiliation(s)
- Elaheh Sadri
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Samaneh Moayeri
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ullah S, Ali HG, Hashmi M, Haider MK, Ishaq T, Tamada Y, Park S, Kim IS. Electrospun composite nanofibers of deoxyribonucleic acid and polylactic acid for skincare applications. J Biomed Mater Res A 2023; 111:1798-1807. [PMID: 37539635 DOI: 10.1002/jbm.a.37592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The development of useful biomaterials has resulted in significant advances in various fields of science and technology. The demand for new biomaterial designs and manufacturing techniques continues to grow, with the goal of building a sustainable society. In this study, two types of DNA-cationic surfactant complexes were synthesized using commercially available deoxyribonucleic acid from herring sperm DNA (hsDNA, <50 bp) and deoxyribonucleic acid from salmon testes DNA (stDNA, ~2000 bp). The DNA-surfactant complexes were blended with a polylactic acid (PLA) biopolymer and electrospun to obtain nanofibers, and then copper nanoparticles were synthesized on nanofibrous webs. Scanning electron microscopic images showed that all nanofibers possessed uniform morphology. Interestingly, different diameters were observed depending on the base pairs in the DNA complex. Transmission electron microscopy showed uniform growth of copper nanoparticles on the nanofibers. Fourier-transform infrared spectroscopy spectra confirmed the uniform blending of both types of DNA complexes in PLA. Both stDNA- and hsDNA-derived nanofibers showed greater biocompatibility than native PLA nanofibers. Furthermore, they exerted significant antibacterial activity in the presence of copper nanoparticles. This study demonstrates that DNA is a potentially useful material to generate electrospun nanofibrous webs for use in biomedical sciences and technologies.
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Hina Ghulam Ali
- Department of Inorganic Chemistry I, and Helmholtz Institute of Ulm (HIU), Ulm University, Ulm, Germany
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Md Kaiser Haider
- Graduate School of Medicine Science and Technology, Division of Smart Materials, Shinshu University Ueda Campus, Nagano, Japan
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| | - Tehmeena Ishaq
- Department of chemistry, The University of Lahore, Sargodha campus, Sargodha, Pakistan
| | - Yasushi Tamada
- Department of Biomedical Engineering, Faculty of Textile Science and Technology, Shinshu University Ueda Campus, Nagano, Japan
| | - Soyoung Park
- Department of Genome Informatics, Immunology Frontier Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University Ueda Campus, Nagano, Japan
| |
Collapse
|
16
|
Chu W, Wang P, Ma Z, Peng L, Guo C, Fu Y, Ding L. Lupeol-loaded chitosan-Ag + nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int J Biol Macromol 2023; 243:125310. [PMID: 37315678 DOI: 10.1016/j.ijbiomac.2023.125310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Lupeol, a pentacyclic triterpene, has demonstrated significant wound healing properties; however, its low water solubility has limited its clinical applicability. To overcome this limitation, we utilized Ag+-modified chitosan (CS-Ag) nanoparticles to deliver lupeol, resulting in the formation of CS-Ag-L-NPs. These nanoparticles were then encapsulated within a temperature-sensitive, self-assembled sericin hydrogel. Various analytical methods, including SEM, FTIR, XRD, HPLC, TGA assay, hemolysis and antibacterial activity tests, were employed to characterize the nanoparticles. Additionally, an infectious wound model was used to evaluate the therapeutic and antibacterial efficacy of the CS-Ag-L-NPs modified sericin hydrogel. Our results showed that the encapsulation efficiency of lupeol in CS-Ag-L-NPs reached 62.1 %, with good antibacterial activity against both gram-positive and gram-negative bacteria and a low hemolysis ratio (<5 %). The CS-Ag-L-NPs sericin gel exhibited multiple beneficial effects, including inhibiting bacterial proliferation in wound beds, promoting wound healing via accelerated re-epithelialization, reducing inflammation, and enhancing collagen fiber deposition. We conclude that the CS-Ag-L-NPs loaded sericin hydrogel has tremendous potential for development as a multifunctional therapeutic platform capable of accelerating wound healing and effectively suppressing bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Wenhui Chu
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Research Institute of Bio-medical and Chemical Industry CO., Ltd, Taizhou, Zhejiang 318000, PR China
| | - Pan Wang
- Traditional Chinese Medicine Industry Development and Promotion Center of Pan'an County, Jinhua, Zhejiang 321000, PR China
| | - Zhe Ma
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Lin Peng
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Chenyuan Guo
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yongqian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Lingzhi Ding
- Taizhou Central Hospital, School of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
17
|
Celik N, Sahin F, Ozel SS, Sezer G, Gunaltay N, Ruzi M, Onses MS. Self-Healing of Biocompatible Superhydrophobic Coatings: The Interplay of the Size and Loading of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3194-3203. [PMID: 36812456 PMCID: PMC9996814 DOI: 10.1021/acs.langmuir.2c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The broad application potential of superhydrophobic coatings is limited by the usage of environment-threatening materials and poor durability. The nature-inspired design and fabrication of self-healing coatings is a promising approach for addressing these issues. In this study, we report a fluorine-free and biocompatible superhydrophobic coating that can be thermally healed after abrasion. The coating is composed of silica nanoparticles and carnauba wax, and the self-healing is based on surface enrichment of wax in analogy to the wax secretion in plant leaves. The coating not only exhibits fast self-healing, just in 1 min under moderate heating, but also displays increased water repellency and thermal stability after healing. The rapid self-healing ability of the coating is attributed to the relatively low melting point of carnauba wax and its migration to the surface of the hydrophilic silica nanoparticles. The dependence of self-healing on the size and loading of particles provides insights into the process. Furthermore, the coating exhibits high levels of biocompatibility where the viability of fibroblast L929 cells was ∼90%. The presented approach and insights provide valuable guidelines in the design and fabrication of self-healing superhydrophobic coatings.
Collapse
Affiliation(s)
- Nusret Celik
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Furkan Sahin
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Sultan Suleyman Ozel
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
| | - Gulay Sezer
- Department
of Pharmacology, Faculty of Medicine, Erciyes
University, 38039 Kayseri, Turkey
| | - Nail Gunaltay
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - Mahmut Ruzi
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
| | - M. Serdar Onses
- ERNAM
− Erciyes University Nanotechnology Application and Research
Center, 38039 Kayseri, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, 38039 Kayseri, Turkey
- UNAM
− National Nanotechnology Research Center, Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
18
|
A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B 12. Int J Biol Macromol 2023; 230:123187. [PMID: 36627031 DOI: 10.1016/j.ijbiomac.2023.123187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Nanofibrous patches have attracted much attention as a solution to resolve drug delivery challenges. In this study, vitamin B12- loaded polyvinyl alcohol (PVA)/chitosan (Cs) nanofiber patch (NFP) was electrospun and cross-linked by glutaraldehyde (GA). The physicochemical properties of the nanofiber patches were assessed by morphological studies, FTIR analysis, hydrophilicity test, mechanical tests, and in-vitro evaluations including biodegradability, MTT assay, and cumulative release test of vitamin. In-vivo studies were also carried out by measuring vitamin B12 levels in the bloodstream and conducting histopathology studies on the animal models. The results showed that the mean diameter of Cs/PVA/B12 and cross-linked patch were approximately 207 and 256 nm, respectively. Cross-linking of NFP led to the lower, slower, and more continuous release of the vitamin with a slight decrease in biodegradability, and an increase in the mechanical properties of the nanofiber patches. Furthermore, the cytocompatibility assay, MTT, and in vivo results revealed no cytotoxicity of Cs/PVA/B12 NFP towards L929 cell line. No lesion or tissue damage was observed in the skin tissue of the animal models wearing these skin patches. Therefore, B12-loaded NFP can be introduced as a potential candidate for commercial transdermal routes.
Collapse
|
19
|
Coelho SC, Rocha F, Estevinho BN. Electrospinning of Microstructures Incorporated with Vitamin B9 for Food Application: Characteristics and Bioactivities. Polymers (Basel) 2022; 14:polym14204337. [PMID: 36297915 PMCID: PMC9608966 DOI: 10.3390/polym14204337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The food industry has been expanding, and new vectors to entrap vitamins have been constantly investigated, aiming at versatile systems with good physico-chemical characteristics, low-cost production, high stability and the efficient release of active ingredients. The vitamin B9 (folic acid or folate) is essential for the healthy functioning of a variety of physiological processes in humans and is beneficial in preventing a range of disorders. In this study, two approaches were developed to encapsulate vitamin B9. Zein and the combination of modified starch with two plasticizers were the selected encapsulating agents to produce microstructures via the electrospinning technique. The objective was to improve the stability and the B9 antioxidant capacity in the final formulations. The work strategy was to avoid limitations such as low bioavailability, stability and thermosensitivity. The microstructures were fabricated and the morphology and shape were assessed by scanning electron microscopy. The B9 release profiles of modified starch and zein microstructures were analyzed in simulated gastric fluid at 37 °C, and in deionized water and ethanol at room temperature. The B9 encapsulation efficiency and the stability of the systems were also studied. The ABTS assay was assessed and the antioxidant activity of the produced microstructures was evaluated. The physico-chemical characterization of loaded B9 in the microstructures was achieved. High encapsulation efficiency values were achieved for the 1% B9 loaded in 12% w/w modified starch film; 5% B9 vitamin encapsulated by the 15% w/w modified starch with 4% w/w tween 80; and 4% w/w glycerol film with heterogeneous microstructures, 5% w/w zein compact film and 10% w/w zein film. In conclusion, the combinations of 7 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; 15 wt.% of modified starch with 4 wt.% tween 80 and 4 wt.% glycerol; and 12 wt.% modified starch and 5 wt.% zein can be used as delivery structures in order to enhance the vitamin B9 antioxidant activity in the food and nutraceutical fields.
Collapse
Affiliation(s)
- Sílvia Castro Coelho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-508-2262; Fax: +351-22-508-1449
| |
Collapse
|
20
|
Ayodeji OJ, Khyum MMO, Afolabi RT, Smith E, Kendall R, Ramkumar S. Preparation of surface-functionalized electrospun PVA nanowebs for potential remedy for SARS-CoV-2. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100128. [PMID: 37520801 PMCID: PMC9278001 DOI: 10.1016/j.hazadv.2022.100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 08/01/2023]
Abstract
Infections with coronaviruses remain a burden that is negatively affecting human life. The use of metal oxides to prevent and control the spread of severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been widely studied. However, the use of metal oxides in masks to enhance the performances of barrier face coverings in trapping and neutralizing SARS-CoV-2 remained unexplored. In the present study, we explore the possibility of developing surface functional PVA/ZnO electrospun nanowebs to be used as a component of multilayer barrier face coverings. Polyvinyl alcohol (PVA) and zinc acetate (ZnA) nanowebs were electrospun as precursor samples. After calcination at 400 degrees centigrade under a controlled atmosphere of nitrogen gas, product nanowebs containing ZnO (PVA/ZnO) were obtained. The presence of ZnO was determined using an attenuated total reflectance Fourier Transform Infrared (FT-IR) spectrometer. This study inspired the possibility of developing surface-functional materials to produce enhanced performance masks against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Olukayode J Ayodeji
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Mirza M O Khyum
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Racheal T Afolabi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ernest Smith
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ron Kendall
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Seshadri Ramkumar
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| |
Collapse
|
21
|
Electrospun Core–Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance. Biomolecules 2022; 12:biom12081057. [PMID: 36008951 PMCID: PMC9406017 DOI: 10.3390/biom12081057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core–sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core–sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core–sheath structure endowed fibers with better water retention property than monolithic fibers. Core–sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core–sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core–sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.
Collapse
|
22
|
Ullah S, Hashmi M, Kim IS. Electrospun Composite Nanofibers for Functional Applications. Polymers (Basel) 2022; 14:2290. [PMID: 35683961 PMCID: PMC9183182 DOI: 10.3390/polym14112290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
of the Special Issue: [...].
Collapse
Affiliation(s)
- Sana Ullah
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Motahira Hashmi
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Graduate School of Medicine Science and Technology, Department of Science and Technology, Division of Smart Material, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
23
|
Liu Y, Chen X, Gao Y, Yu DG, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. J Nanobiotechnology 2022; 20:244. [PMID: 35643572 PMCID: PMC9148457 DOI: 10.1186/s12951-022-01463-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diversified combination of nanostructure and material has received considerable attention from researchers to exploit advanced functional materials. In drug delivery systems, the hydrophilicity and sustained–release drug properties are in opposition. Thus, difficulties remain in the simultaneous improve sustained–release drug properties and increase the hydrophilicity of materials. Methods In this work, we proposed a modified triaxial electrospinning strategy to fabricate functional core–shell fibres, which could elaborate design of shell component for manipulating the sustained-release drug. Cellulose acetate (CA) was designed as the main polymeric matrix, whereas polyethylene glycol (PEG) was added as a hydrophilic material in the middle layer. Cur, as a model drug, was stored in the inner layer. Results Scanning electron microscopy (SEM) results and transmission electron microscopy (TEM) demonstrated that the cylindrical F2–F4 fibres had a clear core–shell structure. The model drug Cur in fibres was verified in an amorphous form during the X-ray diffraction (XRD) patterns, and Fourier transformed infrared spectroscopy (FTIR) results indicated good compatibility with the CA matrix. The water contact angle test showed that functional F2–F4 fibres had a high hydrophilic property in 120 s and the control sample F1 needed over 0.5 h to obtain hydrophilic property. In the initial stage of moisture intrusion into fibres, the quickly dissolved PEG component guided the water molecules and rapidly eroded the internal structure of functional fibres. The good hydrophilicity of F2–F4 fibres brought relatively excellent swelling rate around 4600%. Blank outer layer of functional F2 fibres with 1% PEG created an exciting opportunity for providing a 96 h sustained-release drug profile, while F3 and F4 fibres with over 3% PEG provided a 12 h modified drug release profile to eliminate tailing–off effect. Conclusion Here, the functional F2–F4 fibres had been successfully produced by using the advanced modified triaxial electrospinning nanotechnology with different polymer matrices. The simple strategy in this work has remarkable potential to manipulate hydrophilicity and sustained release of drug carriers, meantime it can also enrich the preparation approaches of functional nanomaterials. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01463-0.
Collapse
|
24
|
Hazra A, Sanyal D, De A, Chatterjee S, Chattopadhyay K, Samanta A. Development and in vitro characterization of capecitabine loaded biopolymeric vehicle for the treatment of colon cancer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahana Hazra
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Dwipanjan Sanyal
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division CSIR ‐ Indian Institute of Chemical Biology Kolkata India
| | - Arnab De
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
- School of Pharmacy Sister Nivedita University Kolkata India
| | - Sohini Chatterjee
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division CSIR ‐ Indian Institute of Chemical Biology Kolkata India
| | - Amalesh Samanta
- Division of Microbiology and Pharmaceutical Biotechnology, Department of Pharmaceutical Technology Jadavpur University Kolkata India
| |
Collapse
|
25
|
Parın FN, Parın U. Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect 2022. [DOI: 10.1002/slct.202104148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fatma Nur Parın
- Polymer Materials Engineering Department Faculty of Engineering and Natural Sciences Bursa Technical University Sinan Campus Yıldırım Bursa 16310 Turkey
| | - Uğur Parın
- Microbiology Department Faculty of Veterinary Science Aydın Adnan Menderes University Işıklı Campus Efeler Aydın 09010 Turkey
| |
Collapse
|