1
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
2
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Zhang X, Zhang H, Liu X, Wang J, Li S, Gao P. Review and Future Perspectives of Stimuli-Responsive Bridged Polysilsesquioxanes in Controlled Release Applications. Polymers (Basel) 2024; 16:3163. [PMID: 39599255 PMCID: PMC11598018 DOI: 10.3390/polym16223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic inorganic and organic components. These materials have been investigated as ideal carriers for therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility, physiological inertia, tunable size and morphology, and their extensive design flexibility of functional organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the controlled release of various targeted therapeutics. This review aims to provide a comprehensive overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and biodegradability, while critically assessing their capabilities for controlled release in response to specific stimuli. Furthermore, practical suggestions and future perspectives for the design and development of BPSs are presented. This review highlights the significant role of stimuli-responsive BPSs in advancing biomedical research.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Han Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jiao Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Shifeng Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
5
|
Yan F, Huang Z, Li Q, Xu S, Nie C, Xia X, Yang F. Preparation and Performance Evaluation of a New Type of Polyethylene-vinyl Acetate/Polystyrene Microsphere Composite Pour Point Depressant for Waxy Crude Oil. ACS OMEGA 2024; 9:30873-30883. [PMID: 39035962 PMCID: PMC11256350 DOI: 10.1021/acsomega.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Polymer/inorganic nanocomposite pour point depressant (PPD) is a research hotspot in the field of waxy crude oil pipelining. However, the inorganic nanoparticles need to be organically modified to improve their organic compatibility, and the inorganic nanoparticles are harmful to crude oil refining. In this work, organic PSMS with an average size of 1.4 μm was first synthesized by dispersion polymerization. Then, a new type of EVA/PSMS composite PPD was prepared by melt blending. The effects of the PSMS, EVA PPD, and composite PPD on the pour point, rheological properties, and wax precipitating properties of a specific waxy crude oil were investigated. It was found that adding 50-200 ppm of PSMS alone slightly improves the crude oil rheology through a spatial hindrance effect, while adding 20 ppm of EVA PPD greatly improves the crude oil rheology by modifying the wax crystal morphology. Compared with EVA PPD, adding 20 ppm composite PPD improves the crude oil rheology further, and the rheological improving ability first enhances and then weakens with increasing the PSMS content in the composite PPD (0-10 wt %). At the PSMS content in the composite PPD 5 wt %, the EVA/PSMS 5% composite PPD makes the wax crystal aggregates more compact, thus showing the strongest rheological improving ability. The EVA molecules could adsorb on the PSMS and form the composite particles, which further regulate the wax crystal morphology and then improve the crude oil rheology further.
Collapse
Affiliation(s)
- Feng Yan
- PipeChina Research Institute of Science and Technology, Tianjin 300450, PR China
| | - Ziming Huang
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Qifu Li
- PipeChina Research Institute of Science and Technology, Tianjin 300450, PR China
| | - Shengbin Xu
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Chaofei Nie
- PipeChina Research Institute of Science and Technology, Tianjin 300450, PR China
| | - Xue Xia
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Fei Yang
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| |
Collapse
|
6
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Almowallad SJ, Alqahtani LS. Synergistic antimicrobial action of chitosan-neem extracts nanoformulation as a promising strategy for overcoming multi-drug resistant bacteria. Int J Biol Macromol 2024; 272:132337. [PMID: 38797302 DOI: 10.1016/j.ijbiomac.2024.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
The objective of the present study was to analyze and identify the phytochemical components found in neem leaf extracts using gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR) methods. The extract samples were acquired using ethyl acetate (EA) and petroleum ether (PE) solvents. Moreover, the extracts were assessed for their antibacterial and antioxidant features. In addition, chitosan nanoparticles (Cs NPs) containing neem extracts were synthesized and evaluated for their potential antibacterial properties, explicitly targeting multi-drug resistant (MDR) bacteria. The neem extracts were analyzed using GC-MS, which identified components such as hydrocarbons, phenolic compounds, terpenoids, alkaloids, and glycosides. Results revealed that the PE extract showed significant antibacterial activity against a range of bacteria. In addition, the PE extract exhibited significant antioxidant activity, exceeding both the EA extract and vitamin C. In addition, both extracts exhibited notable antibiofilm activity, significantly inhibiting the production of biofilm. The Cs NPs, loaded with neem extracts, exhibited significant antibacterial action against multidrug-resistant (MDR) microorganisms. The Cs NPs/EA materials had the greatest zone of inhibition values of 24 ± 2.95 mm against Pseudomonas aeruginosa. Similarly, the Cs NPs/PE materials exhibited a zone of inhibition measurement of 22 ± 3.14 mm against P. aeruginosa. This work highlights the various biochemical components of neem extracts, their strong abilities to combat bacteria and oxidative stress, and the possibility of Cs NPs containing neem extracts as effective treatments for antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Sanaa J Almowallad
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| |
Collapse
|
8
|
Alahmer S, El-Noss M, Farid A. Preparation of chitosan nanoparticles loaded with Balanites aegyptiaca extract for treatment of streptozotocin-induced diabetes in rats. Int J Biol Macromol 2024; 262:130061. [PMID: 38336324 DOI: 10.1016/j.ijbiomac.2024.130061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus is characterized by elevated blood sugar level due to a deficiency in insulin production and/or action. Balanites aegyptiaca (BA) has been employed as a hypoglycemic medication. Nanoparticles (NPs) have many advantages like minimized drug dose, sustainable drug release, maximized bioavailability and delivery of drugs. The study aimed to synthesize novel chitosan (CS) NPs loaded with BA extract (BA Ex). The prepared NPs were examined in treatment of streptozotocin-induced diabetes in rats. The anti-diabetic efficiency was evaluated through measuring of levels of blood glucose, insulin, lipid profile, oxidative stress markers, pro-inflammatory cytokines. GC-MS, HPLC and ICP techniques showed the presence of numerous bioactive components that have an anti-diabetic effectiveness. BA Ex-CS NPs succeeded in treatment of diabetes; where, it increased insulin secretion, lowered both FBG and FTA levels and helped in neogenesis of pancreatic islets beta cells. The regenerative activity of BA Ex-CS NPs is attributed to its high antioxidant and anti-inflammatory properties. This antioxidant activity scavenged the generated free radicles that resulted from STZ administration. CS NPs raised the plant extract efficacy, prevented its degradation, and regulated the release of its components. The delivery of BA Ex bioactive components has been revolutionized by CS NPs.
Collapse
Affiliation(s)
- Shimaa Alahmer
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt
| | - Mostafa El-Noss
- Egyptian Desalithenation Research Center (EDRC), Desert Research Center (DRC), El-Mataryia, Cairo, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
10
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
11
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
12
|
Ansari-Asl Z, Nikpour S, Sedaghat T, Hoveizi E. Preparation, Characterization, and Wound Healing Assessment of Curcumin-Loaded M-MOF (M = Cu, Zn)@Polycaprolactone Nanocomposite Sponges. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04316-0. [PMID: 36689161 DOI: 10.1007/s12010-023-04316-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
The fabrication of multifunctional scaffolds has attracted much attention in biological fields. In this research, some novel composites of Cu(II) or Zn(II) metal-organic framework (M-MOF) and polycaprolactone (PCL), M-MOF@PCL, have been fabricated as multifunctional scaffolds for application in the tissue engineering (TE) field. The porous three-dimensional sponges were prepared by the salt leaching method. Then, the M-MOF@PCL composite sponges have been prepared by in situ synthesis of M-MOF in the presence of the as-obtained PCL sponge to gain a new compound with proper features for biological applications. Finally, curcumin was attached to the M-MOF@PCL as a bioactive compound that can act as a wound-healing agent, anti-oxidant, and anti-inflammatory. The presence of the M-MOF in final composites was investigated by different methods such as FTIR (Fourier-transform infrared), XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy-dispersive X-ray spectroscopy), and TEM (transmission electron microscope). SEM images confirmed the porous structure of the as-obtained composites. According to the EDS and TEM images, M-MOFs were uniformly incorporated throughout the PCL sponges. The water sorption capacities of the blank PCL, Cu-MOF@PCL, and Zn-MOF@PCL were determined as 56%, 155%, and 119%, respectively. In vivo investigation on a third-degree burn model in adult male Wistar rats exhibited an accelerated wound healing for Cu-MOF@PCL compared to with Zn-MOF@PCL and the control group.
Collapse
Affiliation(s)
- Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Soghra Nikpour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tahereh Sedaghat
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
13
|
Kedir WM, Deresa EM, Diriba TF. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon 2022; 8:e10654. [PMID: 36164543 PMCID: PMC9508417 DOI: 10.1016/j.heliyon.2022.e10654] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 10/27/2022] Open
Abstract
Due to their natural availability, biocompatibility, biodegradability, nontoxicity, flexibility, as well as improved structural and functional characteristics, pectin and pectin-based nanocomposites have become an interesting area of numerous researchers. Pectin is a polysaccharide that comes from plants and is used in a variety of products. The significance of pectin polysaccharide and its modified nanocomposites in a number of applications has been shown in numerous reviews. On their uses in pharmaceutical and medication delivery, there are, however, few review publications. The majority of papers on pectin polysaccharide do not structure their explanations of drug distribution and medicinal application. The biological application of pectin nanocomposite is also explained in this review, along with a recent publication. As a result, the goal of this review was in-depth analysis to summarize biological application of pectin and its modified nanocomposites. Due to their exceptional physicochemical and biological characteristics, pectin and its nanocomposites are remarkable materials for medicinal applications. In addition to enhancing the immune system, controlling blood cholesterol, and other things, they have been shown to have anticancer, antidiabetic, antioxidant, anti-inflammatory, immunomodulatory, and antibacterial properties. Because of their biocompatibility and properties that allow for regulated release, they have also received a lot of interest as drug carriers in targeted drug delivery systems. They have been used to administer medications to treat cancer, inflammation, pain, Alzheimer's, bacteria, and relax muscles. This review found that pectin and its derivatives have better drug delivery efficiency and are viable candidates for a wide range of medicinal applications. It has been advised to conduct further research on the subject of toxicity in order to produce commercial formulations that can serve as both therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia
| | - Ebisa Mirete Deresa
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
14
|
Advances in polysaccharide-based nano/microcapsules for biomedical applications: A review. Int J Biol Macromol 2022; 220:878-891. [PMID: 36007696 DOI: 10.1016/j.ijbiomac.2022.08.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023]
Abstract
Biocompatible and biodegradable polysaccharides are abundant and renewable natural materials. Polysaccharides and their derivatives are developed into various carrier materials for biomedical applications. In particular, advanced polysaccharide-based nano/microcapsules have received extensive attention in biomedical applications due to their good encapsulation ability and tunability. In recent years, polysaccharide-based nano/microcapsules have been widely used in drug carriers, gene carriers, antigen carriers, wound dressings, bioimaging and biosensors. Numerous research results have confirmed the feasibility, safety, and effectiveness of polysaccharide-based nano/microcapsules in the above-mentioned biomedical applications. This review discussed and analyzed the latest research strategies and design considerations for these applications in detail. The preparation methods, application strategies, and design considerations of polysaccharide-based nano/microcapsules are summarized and analyzed, and their challenges and future research prospects in biomedicine are further discussed. It is expected to provide researchers with inspiration and design ideas.
Collapse
|
15
|
Kedir WM, Abdi GF, Goro MM, Tolesa LD. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon 2022; 8:e10196. [PMID: 36042744 PMCID: PMC9420383 DOI: 10.1016/j.heliyon.2022.e10196] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Due to their improved structural and functional properties as well as biocompatibility, biodegradability, and nontoxicity, chitosan and its nanoparticles are currently grasping the interest of researchers. Although numerous attempts have been made to apply chitosan and its derivatives to biological applications, few have reported in achieving its pharmacological and drug delivery. The goal of the current work is to provide a summary of the chitosan biopolymer's physical, chemical, and biological properties as well as its synthesis of nanoparticles and characterization of its modified nanocomposites. The drug delivery method and pharmaceutical applications of chitosan biopolymer and its modified nanocomposites are examined in further detail in this research. We will introduce also about the most current publications in this field of study as well as its recent expansion.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Gamachu Fikadu Abdi
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Meta Mamo Goro
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Leta Deressa Tolesa
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| |
Collapse
|
16
|
Aboudzadeh MA, Hamzehlou S. Special Issue on "Function of Polymers in Encapsulation Process". Polymers (Basel) 2022; 14:polym14061178. [PMID: 35335508 PMCID: PMC8954234 DOI: 10.3390/polym14061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France;
| | - Shaghayegh Hamzehlou
- Polymat and Kimika Aplikatua Saila, Kimika Fakultatea, University of the Basque Country UPV-EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- Correspondence:
| |
Collapse
|
17
|
Bakowski K, Vogel S. Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles. RNA Biol 2022; 19:1256-1275. [PMID: 36411594 PMCID: PMC9683052 DOI: 10.1080/15476286.2022.2147278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
From the early days of research on RNA biology and biochemistry, there was an interest to utilize this knowledge and RNA itself for therapeutic applications. Today, we have a series of oligonucleotide therapeutics on the market and many more in clinical trials. These drugs - exploit different chemistries of oligonucleotides, such as modified DNAs and RNAs, peptide nucleic acids (PNAs) or phosphorodiamidate morpholino oligomers (PMOs), and different mechanisms of action, such as RNA interference (RNAi), targeted RNA degradation, splicing modulation, gene expression and modification. Despite major successes e.g. mRNA vaccines developed against SARS-CoV-2 to control COVID-19 pandemic, development of therapies for other diseases is still limited by inefficient delivery of oligonucleotides to specific tissues and organs and often prohibitive costs for the final drug. This is even more critical when targeting multifactorial disorders and patient-specific biological variations. In this review, we will present the evolution of complexity of oligonucleotide delivery methods with focus on increasing complexity of formulations from gymnotic delivery to bioconjugates and to lipid nanoparticles in respect to developments that will enable application of therapeutic oligonucleotides as drugs in personalized therapies.
Collapse
Affiliation(s)
- Kamil Bakowski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark,CONTACT Stefan Vogel Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230Odense, Denmark
| |
Collapse
|