1
|
Zhuravleva IY, Dokuchaeva AA, Vaver AA, Kreiker LV, Mochalova AB, Chepeleva EV, Surovtseva MA, Kolodin AN, Kuznetsova EV, Grek RI. A Novel Polymer Film to Develop Heart Valve Prostheses. Polymers (Basel) 2024; 16:3373. [PMID: 39684117 DOI: 10.3390/polym16233373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Polymer heart valves are a promising alternative to bioprostheses, the use of which is limited by the risks of calcific deterioration of devitalized preserved animal tissues. This is especially relevant in connection with the increasingly widespread use of transcatheter valves. Advances in modern organic chemistry provide a wide range of polymers that can replace biological material in the production of valve prostheses. In this work, the main properties of REPEREN® polymer film, synthesized from methacrylic oligomers reinforced with ultra-thin (50 µm) polyamide fibers, are studied. The film structure was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hydrophilicity and cytocompatibility with EA.hy926 endothelial cells were assessed, and a hemocompatibility evaluation was carried out by studying the platelet aggregation and adhesion upon contact of the REPEREN® with blood. The mechanical behavior and biocompatibility (subcutaneous implantation in rats for up to 90 days, followed by a histological examination) were studied in comparison with a bovine pericardium (BP) cross-linked with an ethylene glycol diglycidyl ether (DE). The results showed that REPEREN® films have two surfaces with a different relief, smooth and rough. The rough surface is more hydrophilic, hemo- and cytocompatible. Compared with the DE-BP, REPEREN® has a higher ultimate tensile stress and better biocompatibility when implanted subcutaneously in rats. The key properties of REPEREN® showed its potential for the development of a polymeric heart valve. Further studies should be devoted to assessing the durability of REPEREN® valves and evaluating their function during orthotopic implantation in large animals.
Collapse
Affiliation(s)
- Irina Yu Zhuravleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Anna A Dokuchaeva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Andrey A Vaver
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Ludmila V Kreiker
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Alexandra B Mochalova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Elena V Chepeleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Maria A Surovtseva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center Institute of Cytology and Genetics SB RAS, 2 Timakova St., Novosibirsk 630060, Russia
| | - Aleksei N Kolodin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Elena V Kuznetsova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Rostislav I Grek
- Icon Lab Gmbh Ltd., 1 Barrikad St., Nizhny Novgorod 603003, Russia
| |
Collapse
|
2
|
Alharbi N, Guthold M. Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers. J Mech Behav Biomed Mater 2024; 155:106564. [PMID: 38749267 DOI: 10.1016/j.jmbbm.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/28/2024]
Abstract
Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 μm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa and σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1-e-0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.
Collapse
Affiliation(s)
- Nouf Alharbi
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
3
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
4
|
Dokuchaeva AA, Mochalova AB, Timchenko TP, Kuznetsova EV, Podolskaya KS, Pashkovskaya OA, Filatova NA, Vaver AA, Zhuravleva IY. Remote Outcomes with Poly-ε-Caprolactone Aortic Grafts in Rats. Polymers (Basel) 2023; 15:4304. [PMID: 37959984 PMCID: PMC10649699 DOI: 10.3390/polym15214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Poly-ε-caprolactone ((1,7)-polyoxepan-2-one; PCL) is a biodegradable polymer widely used in various fields of bioengineering, but its behavior in long-term studies appears to depend on many conditions, such as application specificity, chemical structure, in vivo test systems, and even environmental conditions in which the construction is exploited in. In this study, we offer an observation of the remote outcomes of PCL tubular grafts for abdominal aorta replacement in an in vivo experiment on a rat model. Adult Wistar rats were implanted with PCL vascular matrices and observed for 180 days. The results of ultrasound diagnostics and X-ray tomography (CBCT) show that the grafts maintained patency for the entire follow-up period without thrombosis, leakage, or interruptions, but different types of tissue reactions were found at this time point. By the day of examination, all the implants revealed a confluent endothelial monolayer covering layers of hyperplastic neointima formed on the luminal surface of the grafts. Foreign body reactions were found in several explants including those without signs of stenosis. Most of the scaffolds showed a pronounced infiltration with fibroblastic cells. All the samples revealed subintimal calcium phosphate deposits. A correlation between chondroid metaplasia in profound cells of neointima and the process of mineralization was supported by immunohistochemical (IHC) staining for S100 proteins and EDS mapping. Microscopy showed that the scaffolds with an intensive inflammatory response or formed fibrotic capsules retain their fibrillar structure even on day 180 after implantation, but matrices infiltrated with viable cells partially save the original fibrillary network. This research highlights the advantages of PCL vascular scaffolds, such as graft permeability, revitalization, and good surgical outcomes. The disadvantages are low biodegradation rates and exceptionally high risks of mineralization and intimal hyperplasia.
Collapse
Affiliation(s)
- Anna A. Dokuchaeva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.B.M.); (T.P.T.); (E.V.K.); (K.S.P.); (O.A.P.); (N.A.F.); (A.A.V.); (I.Y.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dokuchaeva AA, Vladimirov SV, Borodin VP, Karpova EV, Vaver AA, Shiliaev GE, Chebochakov DS, Kuznetsov VA, Surovtsev NV, Adichtchev SV, Malikov AG, Gulov MA, Zhuravleva IY. Influence of Single-Wall Carbon Nanotube Suspension on the Mechanical Properties of Polymeric Films and Electrospun Scaffolds. Int J Mol Sci 2023; 24:11092. [PMID: 37446270 DOI: 10.3390/ijms241311092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions containing several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar behavior with an extremum at 0.02% concentration for strength at break.
Collapse
Affiliation(s)
- Anna A Dokuchaeva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Sergey V Vladimirov
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Vsevolod P Borodin
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Elena V Karpova
- Group of Optical Spectrometry, Center of Spectral Investigations, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Andrey A Vaver
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Gleb E Shiliaev
- LLC "Tuball Center NSK", 24 Inzhenernaya St., Novosibirsk 630090, Russia
| | | | - Vasily A Kuznetsov
- I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (IOS UB RAS), S. Kovalevskoy St., 22/20, Yekaterinburg 620108, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Sergey V Adichtchev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Alexander G Malikov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Mikhail A Gulov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Irina Y Zhuravleva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| |
Collapse
|
6
|
Lecina-Tejero Ó, Pérez MÁ, García-Gareta E, Borau C. The rise of mechanical metamaterials: Auxetic constructs for skin wound healing. J Tissue Eng 2023; 14:20417314231177838. [PMID: 37362902 PMCID: PMC10285607 DOI: 10.1177/20417314231177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Auxetic materials are known for their unique ability to expand/contract in multiple directions when stretched/compressed. In other words, they exhibit a negative Poisson's ratio, which is usually positive for most of materials. This behavior appears in some biological tissues such as human skin, where it promotes wound healing by providing an enhanced mechanical support and facilitating cell migration. Skin tissue engineering has been a growing research topic in recent years, largely thanks to the rapid development of 3D printing techniques and technologies. The combination of computational studies with rapid manufacturing and tailored designs presents a huge potential for the future of personalized medicine. Overall, this review article provides a comprehensive overview of the current state of research on auxetic constructs for skin healing applications, highlighting the potential of auxetics as a promising treatment option for skin wounds. The article also identifies gaps in the current knowledge and suggests areas for future research. In particular, we discuss the designs, materials, manufacturing techniques, and also the computational and experimental studies on this topic.
Collapse
Affiliation(s)
- Óscar Lecina-Tejero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| |
Collapse
|
7
|
In Vivo Evaluation of PCL Vascular Grafts Implanted in Rat Abdominal Aorta. Polymers (Basel) 2022; 14:polym14163313. [PMID: 36015570 PMCID: PMC9412484 DOI: 10.3390/polym14163313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun tissue-engineered grafts made of biodegradable materials have become a perspective search field in terms of vascular replacement, and more research is required to describe their in vivo transformation. This study aimed to give a detailed observation of hemodynamic and structural properties of electrospun, monolayered poly-ε-caprolactone (PCL) grafts in an in vivo experiment using a rat aorta replacement model at 10, 30, 60 and 90 implantation days. It was shown using ultrasound diagnostic and X-ray tomography that PCL grafts maintain patency throughout the entire follow-up period, without stenosis or thrombosis. Vascular compliance, assessed by the resistance index (RI), remains at the stable level from the 10th to the 90th day. A histological study using hematoxylin-eosin (H&E), von Kossa and Russell–Movat pentachrome staining demonstrated the dynamics of tissue response to the implant. By the 10th day, an endothelial monolayer was forming on the graft luminal surface, followed by the gradual growth and compaction of the neointima up to the 90th day. The intense inflammatory cellular reaction observed on the 10th day in the thickness of the scaffold was changed by the fibroblast and myofibroblast penetration by the 30th day. The cellularity maximum was reached on the 60th day, but by the 90th day the cellularity significantly (p = 0.02) decreased. From the 60th day, in some samples, the calcium phosphate depositions were revealed at the scaffold-neointima interface. Scanning electron microscopy showed that the scaffolds retained their fibrillar structure up to the 90th day. Thus, we have shown that the advantages of PCL scaffolds are excellent endothelialization and good surgical outcome. The disadvantages include their slow biodegradation, ineffective cellularization, and risks for mineralization and intimal hyperplasia.
Collapse
|
8
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
9
|
Tian W, Liu X, Zhang X, Bai T, Wu B. Self-Assembly of Ultrafine Fibers with Micropores via Cryogenic Electrospinning and Its Potential Application in Esophagus Repair. Polymers (Basel) 2022; 14:polym14091924. [PMID: 35567093 PMCID: PMC9104277 DOI: 10.3390/polym14091924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Electrospinning (e-spinning) has been widely applied to fabricate flat films accumulated by microfibers for tissue engineering. In order to acquire an uneven surface morphology, two methods have been applied traditionally. The first uses a designed receiving substrate, which is stable, but suppresses the flexibility. The second uses dual solvents to achieve bimodal distribution of the fiber diameter. However, the bimodal fiber diameter causes inhomogeneity. To solve these challenges, cryogenic electrospinning, using a flat substrate and a single solvent, was performed in this study to obtain uneven films. By applying a low temperature to the flat receiving substrate, uneven e-spun films with wall-like structures were achieved through the self-assembly of uniform filaments. In addition, the wall-like structures enhanced the mechanical properties of the e-spun films. Moreover, the cryogenic e-spinning produced micropores on the fiber surface, which have the potential to promote esophageal epithelial cell adhesion, proliferation and differentiation.
Collapse
Affiliation(s)
- Wenqing Tian
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (W.T.); (X.Z.)
| | - Xinghuang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.L.); (T.B.)
| | - Xianglin Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (W.T.); (X.Z.)
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.L.); (T.B.)
| | - Bin Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (W.T.); (X.Z.)
- Correspondence:
| |
Collapse
|