1
|
Qu H, Huang W, Lin Z, Cheng X, Min R, Teng C, Caucheteur C, Hu X. Influence of Annealing on Polymer Optical Fiber Bragg Grating Inscription, Stability and Sensing: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7578. [PMID: 37688031 PMCID: PMC10490614 DOI: 10.3390/s23177578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
This article reviews recent research progress on the annealing effects on polymer optical fibers (POFs), which are of great importance for inscription, stability and sensing applications of fiber Bragg gratings (FBGs) in POFs due to their unique properties related to polymer molecular chains. In this review, the principle of annealing to reduce frozen-in stress in POFs drawing and different annealing timings are firstly summarized. Then, the annealing methods for POFs are introduced under several different conditions (temperature, humidity, strain, stress and solution). Afterwards, the principle of FBGs and several inscription techniques are reported. Subsequently, the annealing effects on the properties of POFs and polymer optical fiber Bragg gratings (POFBGs) quality are discussed. Finally, the influence of annealing on POFBG sensitivity is summarized. Overall, this paper provides a comprehensive overview of annealing techniques and their impact on both POFs and POFBGs. We hope that it will highlight the important progress made in this field.
Collapse
Affiliation(s)
- Hang Qu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (H.Q.); (W.H.); (Z.L.)
| | - Weiyuan Huang
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (H.Q.); (W.H.); (Z.L.)
| | - Zhoupeng Lin
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (H.Q.); (W.H.); (Z.L.)
| | - Xin Cheng
- Department of Electrical Engineering, Photonics Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 997700, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China;
| | - Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Christophe Caucheteur
- Department of Electromagnetism and Telecommunication, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium;
| | - Xuehao Hu
- Department of Electromagnetism and Telecommunication, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium;
| |
Collapse
|
2
|
Qu H, Chen Z, Gao S, Min R, Woyessa G, Bang O, Wang H, Caucheteur C, Hu X. Femtosecond laser line-by-line tilted Bragg grating inscription in single-mode step-index TOPAS/ZEONEX polymer optical fiber. OPTICS LETTERS 2023; 48:1438-1441. [PMID: 36946947 DOI: 10.1364/ol.482598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this Letter, we demonstrate 8°-tilted fiber Bragg grating (TFBG) inscription in single-mode step-index TOPAS/ZEONEX polymer optical fibers (POFs) using a 520 nm femtosecond laser and the line-by-line (LbL) writing technique. As a result of the tilt angle and the fiber refractive index, a large spectral range of cladding mode resonances covering 147 nm is obtained. The evolution of the transmitted spectrum is analyzed as a function of the surrounding refractive index (SRI) in a large range from 1.30 to 1.50. The cutoff cladding mode shows a refractive index sensitivity of 507 nm/RIU (refractive index unit). For single-resonance tracking near the cutoff mode, the sensitivity is at least 6 nm/RIU, depending on the exact wavelength position of the cladding modes. The main originality of our work is that it produces, for the first time, to the best of our knowledge, a TFBG in POF that operates in the refractive index range of aqueous solutions. The sensing capability for a large range of refractive index values is also relevant for (bio)chemical sensing in different media.
Collapse
|
3
|
Hu X, Chen Y, Gao S, Min R, Woyessa G, Bang O, Qu H, Wang H, Caucheteur C. Correction: Hu et al. Direct Bragg Grating Inscription in Single Mode Step-Index TOPAS/ZEONEX Polymer Optical Fiber Using 520 nm Femtosecond Pulses. Polymers 2022, 14, 1350. Polymers (Basel) 2022; 14:2640. [PMID: 35808802 PMCID: PMC9268787 DOI: 10.3390/polym14132640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The authors wish to make a change to the published paper [...].
Collapse
Affiliation(s)
- Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (H.Q.)
- Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China
| | - Yuhang Chen
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (H.Q.)
- Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China
| | - Shixin Gao
- College of Science, Shenyang Aerospace University, Shenyang 110136, China; (S.G.); (H.W.)
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China;
| | - Getinet Woyessa
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (G.W.); (O.B.)
| | - Ole Bang
- DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (G.W.); (O.B.)
| | - Hang Qu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China; (Y.C.); (H.Q.)
- Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China
| | - Heng Wang
- College of Science, Shenyang Aerospace University, Shenyang 110136, China; (S.G.); (H.W.)
| | - Christophe Caucheteur
- Department of Electromagnetism and Telecommunication, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium;
| |
Collapse
|
4
|
Abstract
Temperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in hazardous working environments (air pollution, chemical or ionizing contamination), and in the presence of electromagnetic disturbances. The use of fiber optic temperature sensors in polymer technology can significantly reduce the cost of their production. Moreover, the installation process and usage would be simplified. As a result, these types of sensors would become increasingly popular in industrial solutions. This review provides a critical overview of the latest development of fiber optic temperature sensors based on Fabry–Pérot interferometer made with polymer technology.
Collapse
|
5
|
Novel Measurement-Based Efficient Computational Approach to Modeling Optical Power Transmission in Step-Index Polymer Optical Fiber. PHOTONICS 2022. [DOI: 10.3390/photonics9040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Polymer optical fibers (POFs) are playing an important role in industrial applications nowadays due to their ease of handling and resilience to bending and environmental effects. A POF can tolerate a bending radius of less than 20 mm, it can work in environments with temperatures ranging from −55 °C to +105 °C, and its lifetime is around 20 years. In this paper, we propose a novel, rigorous, and efficient computational model to estimate the most important parameters that determine the characteristics of light propagation through a step-index polymer optical fiber (SI-POF). The model uses attenuation, diffusion, and mode group delay as functions of the propagation angle to characterize the optical power transmission in the SI-POF. Taking into consideration the mode group delay allows us to generalize the computational model to be applicable to POFs with different index profiles. In particular, we use experimental measurements of spatial distributions and frequency responses to derive accurate parameters for our SI-POF simulation model. The experimental data were measured at different fiber lengths according to the cut-back method. This method consists of taking several measurements such as frequency responses, angular intensity distributions, and optical power measurements over a long length of fiber (>100 m), then cutting back the fiber while maintaining the same launching conditions and repeating the measurements on the shorter lengths of fiber. The model derivation uses an objective function to minimize the differences between the experimental measurements and the simulated results. The use of the matrix exponential method (MEM) to implement the SI-POF model results in a computationally efficient model that is suitable for POF-based system-level studies. The efficiency gain is due to the independence of the calculation time with respect to the fiber length, in contrast to the classic analytical solutions of the time-dependent power flow equation. The robustness of the proposed model is validated by calculating the goodness-of-fit of the model predictions relative to experimental data.
Collapse
|