1
|
Chen J, Zhang T, Xu Y, Li H, Cui H, Zhao X, Zhou Y, Qu K, Cui Z. Molecularly Imprinted Electrochemical Sensor Based on MWCNTs/GQDs for the Detection of Sulfamethazine in Aquaculture Seawater. BIOSENSORS 2025; 15:184. [PMID: 40136981 PMCID: PMC11940161 DOI: 10.3390/bios15030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
In this work, a novel molecularly imprinted electrochemical sensor was proposed based on molecular imprinting technology for the detection of sulfamethazine. A glassy carbon electrode was modified with a composite material of carbon nanotubes and graphene quantum dots to effectively improve sensitivity. The molecularly imprinted electrochemical sensor was then prepared by electropolymerization using sulfamethazine as the template and o-phenylenediamine as the functional monomer on the modified electrode. Under optimal measurement conditions, electrochemical tests of different sulfamethazine concentrations (0.5 μM-200 μM) showed excellent linearity and a detection limit of 0.068 μM. In addition, the sensor demonstrated satisfactory selectivity, stability, and reusability. Furthermore, the sensor was applied to the spiked analysis of sulfamethazine in grouper aquaculture water, achieving recovery rates between 95.4% and 104.8%, with a relative standard deviation (RSD) of less than 4.14%. These results indicated that the developed method was effective for the analysis of sulfamethazine in aquaculture seawater, providing a new approach for the detection of antibiotic residues in seawater samples.
Collapse
Affiliation(s)
- Jianlei Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tianruo Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yong Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongwu Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinguo Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yun Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Chen P, Zhang Q, Yin H, Di S, Liu H, Qin H, Liu M, Liu Y, Li Z, Zhu S. Recent Progress and Applications of Advanced Nanomaterials in Solid-Phase Extraction. Electrophoresis 2024. [PMID: 39498723 DOI: 10.1002/elps.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Sample preparation maintains a key bottleneck in the whole analytical procedure. Solid-phase sorbents (SPSs) have garnered increasing attention in sample preparation research due to their crucial roles in achieving high clean-up and enrichment efficiency in the analysis of trace targets present in complex matrices. Novel nanoscale materials with improved characteristics have garnered considerable interest across different scientific disciplines due to the limited capabilities of traditional bulk-scale materials. The purpose of this review is to offer a thorough summary of the latest developments and uses of SPSs in preparing samples for chromatographic analysis, focusing on the years 2020-2024. The techniques for preparing SPSs are examined, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), carbon nanoparticles (CNPs), molecularly imprinted polymers (MIPs), and metallic nanomaterials (MNs). Examining the pros and cons of different extraction methods, including solid-phase extraction (SPE), magnetic SPE (MSPE), flow-based SPE (FBA-SPE), solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and dispersive SPE (DSPE), is the main focus. Furthermore, this article presents the utilization of SPE technology for isolating common contaminants in various environmental, biological, and food specimens. We highlight the persistent challenges in SPSs and anticipate future advancements and applications of novel SPSs.
Collapse
Affiliation(s)
- Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Qiuyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hang Yin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan Textile University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hailan Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ming Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yunkang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Zihan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
3
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
4
|
Wu W, Yu C, Sui L, Xu H, Li J, Zhou N, Chen L, Song Z. Molecularly imprinted polymer-coated silica microbeads for high-performance liquid chromatography. Analyst 2024; 149:3765-3772. [PMID: 38842353 DOI: 10.1039/d4an00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Molecularly imprinted polymer (MIP)-based chromatographic separation materials, owing to their advantages of unique selectivity, low cost, suitable reproducibility, and acceptable stability, have attracted a great deal of research in different fields. In this investigation, a new type of MIP-coated silica (MIP/SiO2) separation material was developed using sulfamethoxazole as a template; the specific recognition ability of MIP and appropriate physicochemical properties (abundant Si-OH, suitable pore structure, good stability, etc.) of SiO2 microbeads were combined. The MIP/SiO2 separation materials were characterized carefully. Then, various compounds (such as sulfonamides, ginsenosides, nucleosides, and several pesticides) were used to comprehensively evaluate the chromatographic performances of the MIP/SiO2 column. Furthermore, the chromatographic performances of the MIP/SiO2 column were compared with those of other separation materials (such as non-imprinted polymer-coated silica, C18/SiO2, and bare silica) packed columns. The resolution value of all measured compounds was more than 1.51. The column efficiencies of 13 510 plates per meter (N m-1) for sulfamethoxazole, 11 600 N m-1 for ginsenoside Rd, and 10 510 N m-1 for 2'-deoxyadenosine were obtained. The acceptable results verified that the MIP/SiO2 column can be applied to separate highly polar drugs such as sulfonamides, ginsenosides, nucleosides, and pesticides.
Collapse
Affiliation(s)
- Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Cuichi Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Lei Sui
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical College, Yantai 264003, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
5
|
Maged A, Elgarahy AM, Hlawitschka MW, Haneklaus NH, Gupta AK, Bhatnagar A. Synergistic mechanisms for the superior sorptive removal of aquatic pollutants via functionalized biochar-clay composite. BIORESOURCE TECHNOLOGY 2023; 387:129593. [PMID: 37558100 DOI: 10.1016/j.biortech.2023.129593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
This study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors. FBKC demonstrated a maximum sorption capacity of 192.80 and 281.24 mg/g for NFX and CVD, respectively. The suited fitting of the experimental data to Freundlich and Clark models suggested multi-layer sorption of NFX/CVD molecules. The mechanistic studies of NFX/CVD sorption onto FBKC unveiled multiple mechanisms, including π-π interaction, hydrogen bonding, electrostatic attraction, and surface/pore filling effect. The estimated cost of 5.72 €/kg and superior sorption capacity makes FBKC an efficient low-cost sorbent for emergent water pollutants.
Collapse
Affiliation(s)
- Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| | - Mark W Hlawitschka
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Nils H Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
6
|
Hu G, Wu T, Liu Z, Gao S, Hao J. Application of molecular imprinting technology based on new nanomaterials in adsorption and detection of fluoroquinolones. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2467-2479. [PMID: 37183439 DOI: 10.1039/d3ay00353a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Irrational use of fluoroquinolones (FQs) can lead to allergic reactions, adverse reactions to the heart and damage of the liver; thus, it is of great significance to establish rapid, sensitive and accurate detection methods for FQs. Molecularly imprinted polymers (MIPs) with specific structures synthesized by molecular imprinting technology (MIT) are widely used for the detection of FQs due to their high specificity, high sensitivity and stable performance. Recently, new functional nanomaterials with different morphologies and sizes, which can provide rich sites for surface chemical reactions, have attracted more and more attention of the researchers. Thus, the application status and development prospects of MIT based on new nanomaterials in the adsorption and detection of FQs were summarized in this study, providing a theoretical basis and technical guarantee for the development of new and efficient food safety analysis strategies based on MIPs.
Collapse
Affiliation(s)
- Gaoshuang Hu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Tianqi Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Ziyang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
7
|
Duan Y, Xu Z, Liu Z. A multi-site recognition molecularly imprinted solid-phase microextraction fiber for selective enrichment of three cross-class environmental endocrine disruptors. J Mater Chem B 2023; 11:1020-1028. [PMID: 36637004 DOI: 10.1039/d2tb02156k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecularly imprinted solid-phase microextraction fibers with multi-site recognition were prepared for the simultaneous enrichment of three cross-class environmental endocrine disruptors (EEDs) in environmental water. The surface morphology of the multi-site recognition molecularly imprinted fibers was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and surface area and pore size analyzer. Under optimal extraction conditions, the molecularly imprinted fibers showed higher extraction capacity to bisphenol F, diethyl phthalate, and methyl paraben than non-imprinted polymer fibers and commercial fibers. Compared with commercial solid-phase microextraction fibers, the multi-site recognition molecularly imprinted fibers showed superior extraction performance at different concentrations of analytes. The selectivity study confirmed that the multi-site recognition molecularly imprinted solid-phase microextraction fibers were highly selective not only for specific template molecules but also for bisphenols, parabens, and phthalates. Furthermore, the method achieved a limit of detection of 0.003-0.02 μg L-1 for the three cross-class EEDs in environmental water samples with recoveries ranging from 75.76% to 112.69% and relative standard deviations below 11.46%. Thus, the novel MIP fibers with multi-site recognition prepared in this work have provided a promising approach in the field of specific adsorption and a strategy for the simultaneous and sensitive monitoring of multiple cross-class trace EEDs.
Collapse
Affiliation(s)
- Yunli Duan
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
S-Scheme BaTiO3/TiO2 heterojunctions: Piezophotocatalytic degradation of norfloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|