1
|
Senga R, Nasr M, Fujii M, Abdelhaleem A. Sustainable valorization of agricultural waste into bioplastic and its end-of-life recyclability for biochar production: Economic profitability and life cycle assessment. CHEMOSPHERE 2024; 369:143847. [PMID: 39615855 DOI: 10.1016/j.chemosphere.2024.143847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
While the industrial sectors have recently focused on producing bioplastic materials, the utilization of edible feedstocks and the generation of wastes and byproducts during the bioplastic synthesis process might delay achieving the environmental sustainability strategy. To overcome these limitations related to bioplastic industrialization, this study focuses on synthesizing bioplastics from waste sources, followed by recycling its end-of-life (e.g., spent and exhausted) material into biochar. Sweet potato peel waste, banana pseudo-stems, and cooking oil waste were used to extract starch, cellulose, and glycerol (a plasticizer) involved in bioplastic manufacturing, respectively. It was found that the cellulose content of 30% w w-1 in bioplastic maintained the best physicochemical, mechanical, and biodegradability properties, recommending a high applicability for food packaging. The exhausted bioplastic was then pyrolyzed to maintain a biochar yield of 32.60 ± 0.89%, avoiding the risk of secondary pollution from waste material disposal. This biochar was utilized to treat wastewater generated from the bioplastic synthesis process, showing the optimum adsorption factors of biochar dosage = 3.81 g L-1, time = 102 min, and solution pH = 7.81. The combined bioplastic production, waste pyrolysis, and wastewater treatment scheme could earn profits from biomaterial sales, carbon credit, and pollution reduction shadow price, maintaining a 6.78-year payback period and a 12.09% internal rate of return. This integrated framework depicted better contributions to the mid-point/end-point life cycle assessment impact categories than the only bioplastic production scenario. This study contributed towards achieving several sustainable development goals (SDGs), including SDG#3: human health protection, SDG#6: wastewater treatment, and SDG#12: waste recycling.
Collapse
Affiliation(s)
- Robert Senga
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Amal Abdelhaleem
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
| |
Collapse
|
2
|
Yu H, Zhang Y, Wang L, Tuo Y, Yan S, Ma J, Zhang X, Shen Y, Guo H, Han L. Experimental and DFT insights into the adsorption mechanism of methylene blue by alkali-modified corn straw biochar. RSC Adv 2024; 14:1854-1865. [PMID: 38192323 PMCID: PMC10773387 DOI: 10.1039/d3ra05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
As an efficient and cost-effective adsorbent, biochar has been widely used in the adsorption and removal of dyes. In this study, a simple NaOH-modified biochar with the pyrolysis temperature of 300 °C (NaCBC300) was synthesized, characterized, and investigated for the adsorption performances and mechanisms of methylene blue (MB). NaCBC300 exhibited excellent MB adsorption performance with maximum removal efficiency and adsorption capacity of 99.98% and 290.71 mg g-1, which were three and four times higher than biochar without modification, respectively. This might be attributed to the increased content of -OH and the formation of irregular flakes after NaOH modification. The Freundlich isotherm suggested multilayer adsorption between NaCBC300 and MB. Spectroscopic characterizations demonstrated that multiple mechanisms including π-π interaction, H-bonding, and pore-filling were involved in the adsorption. According to density functional theory (DFT) calculations, electrostatic interaction between NaCBC300 and MB was verified. The highest possibility of the attraction between NaCBC300 and MB was between -COOH in NaCBC300 and R-N(CH3)2 in MB. This work improved our understanding of the mechanism for MB adsorption by modified biochar and provided practical and theoretical guidance for adsorbent preparation with high adsorption ability for dyes.
Collapse
Affiliation(s)
- Huali Yu
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yulu Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lianfeng Wang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment Beijing 100006 China
| | - Song Yan
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Junling Ma
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Xue Zhang
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Yu Shen
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Haiyan Guo
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| | - Lei Han
- School of Environmental & Chemical Engineering, Dalian Jiaotong University Dalian 116021 China +86-411-84107585 +86-411-84107585
| |
Collapse
|
3
|
Ghosh S, Nandasana M, Webster TJ, Thongmee S. Agrowaste-generated biochar for the sustainable remediation of refractory pollutants. Front Chem 2023; 11:1266556. [PMID: 38033473 PMCID: PMC10687200 DOI: 10.3389/fchem.2023.1266556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The rapid growth of various industries has led to a significant, alarming increase in recalcitrant pollutants in the environment. Hazardous dyes, heavy metals, pesticides, pharmaceutical products, and other associated polycyclic aromatic hydrocarbons (such as acenaphthene, fluorene, fluoranthene, phenanthrene, and pyrene) have posed a significant threat to the surroundings due to their refractory nature. Although activated carbon has been reported to be an adsorbent for removing contaminants from wastewater, it has its limitations. Hence, this review provides an elaborate account of converting agricultural waste into biochar with nanotextured surfaces that can serve as low-cost adsorbents with promising pollutant-removing properties. A detailed mechanism rationalized that this strategy involves the conversion of agrowaste to promising adsorbents that can be reduced, reused, and recycled. The potential of biowaste-derived biochar can be exploited for developing biofuel for renewable energy and also for improving soil fertility. This strategy can provide a solution to control greenhouse gas emissions by preventing the open burning of agricultural residues in fields. Furthermore, this serves a dual purpose for environmental remediation as well as effective management of agricultural waste rich in both organic and inorganic components that are generated during various agricultural operations. In this manner, this review provides recent advances in the use of agrowaste-generated biochar for cleaning the environment.
Collapse
Affiliation(s)
- Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Maitri Nandasana
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Thomas J. Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Materials Program, Federal University of Piaui, Teresina, Brazil
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
He Y, Zheng Y, Liu X, Liu C, Zhang H, Han J. Polyvinyl Alcohol-Citric Acid: A New Material for Green and Efficient Removal of Cationic Dye Wastewater. Polymers (Basel) 2023; 15:4341. [PMID: 38006066 PMCID: PMC10675270 DOI: 10.3390/polym15224341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The citric acid (CA) cross-linked polyvinyl alcohol (PVA) adsorbent, PVA-CA, was efficiently synthesized and its application to the removal of dyes in water, particularly the cationic dye, methylene blue (MB), was thoroughly investigated. The morphologies and physiochemical characteristics of PVA-CA were fully characterized by SEM, FT-IR, XRD, TGA, BET, and XPS. The effects of contact time, adsorbent dosage, MB concentration, solution pH, and temperature on the adsorption performance were compared using controllable methods. The maximum adsorption capacity of PVA-CA was 709.86 mg g-1 and the removal rate remained high through several adsorption-desorption cycles, demonstrating that such a composite absorbent has a good adsorption performance and recoverability. Further analysis by the density functional theory (DFT) showed that van der Waals interactions, electrostatic interactions and hydrogen bonding interactions between PVA-CA and MB played significant roles in the adsorption mechanism.
Collapse
Affiliation(s)
- Ye He
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yangyang Zheng
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xia Liu
- Shandong Nonmetallic Materials Institute, Jinan 250031, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Zhao F, Shan R, Li S, Yuan H, Chen Y. Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. Int J Mol Sci 2023; 24:ijms24065755. [PMID: 36982828 PMCID: PMC10054263 DOI: 10.3390/ijms24065755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The application of the adsorption method in sewage treatment has recently become a hot spot. A novel magnetic clay-biochar composite (BNT-MBC) was fabricated by co-pyrolysis of bentonite and biomass after being impregnated with Fe (NO3)3·9H2O. Its adsorption capacity for Cd(II) and methyl orange was approximately doubled, reaching a maximum of 26.22 and 63.34 mg/g, and could be easily separated from the solution by using external magnets with its saturation magnetization of 9.71 emu/g. A series of characterizations including surface morphology and pore structure, elemental analysis, functional group analysis and graphitization were carried out, showing that the specific surface area was increased 50 times by loading 20 wt.% bentonite, while its graphitization and oxygen-containing functional groups were also enhanced. The isotherm fitting indicated that Cd(II) was adsorbed in multiple layers, while methyl orange was in both monolayer and multilayer adsorptions. The kinetic fitting indicated that chemisorption was the rate-limiting step of both, and it was also a complex process controlled by two steps with the fitting of intra-particle diffusion. In the binary system of Cd(II) and methyl orange, the co-existing pollutants facilitated the adsorption of the original one, and there was no competition between adsorption sites of Cd(II) and methyl orange. BNT-MBC also exhibited good reusability and can be magnetically recovered for recycling. Thus, the magnetic clay-biochar composite BNT-MBC is a cost-effective and promising adsorbent for simultaneous removing Cd(II) and methyl orange from wastewater.
Collapse
Affiliation(s)
- Fengxiao Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8701-3241
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
6
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|