1
|
Campanile A, Liguori B, Lama GC, Recupido F, Donatiello S, Gagliardi M, Morone A, Verdolotti L. The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers (Basel) 2024; 16:2337. [PMID: 39204557 PMCID: PMC11358950 DOI: 10.3390/polym16162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In the last century, the issue of "water reserves" has become a remarkably strategic topic in modern science and technology. In this context, water resource treatment and management systems are being developed in both agricultural and urban area scenarios. This can be achieved using superabsorbent polymers (SAPs), highly cross-linked hydrogels with three-dimensional, hydrophilic polymer structures capable of absorbing, swelling and retaining huge amounts of aqueous solutions. SAPs are able to respond to several external stimuli, such as temperature, pH, electric field, and solution composition and concentration. They can be used in many areas, from sensor technology to drug delivery, agriculture, firefighting applications, food, and the biomedical industry. In addition, new categories of functional SAP-based materials, mainly superabsorbent polymer composites, can also encapsulate fertilizers to efficiently provide the controlled release of both water and active compounds. Moreover, SAPs have great potential in wastewater treatment for the removal of harmful elements. In this respect, in the following review, the most promising and recent advances in the use of SAPs and composite SAPs as tools for the sustainable management and remediation of water resource are reviewed and discussed by identifying opportunities and drawbacks and highlighting new challenges and aims to inspire the research community.
Collapse
Affiliation(s)
- Assunta Campanile
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
| | - Barbara Liguori
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Silvana Donatiello
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Mariarita Gagliardi
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Alfonso Morone
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| |
Collapse
|
2
|
Akbar WA, Rahim HU, Rutigliano FA. Microbial- and seaweed-based biopolymers: Sources, extractions and implications for soil quality improvement and environmental sustainability - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120964. [PMID: 38692027 DOI: 10.1016/j.jenvman.2024.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Improving soil quality without creating any environmental problems is an unescapable goal of sustainable agroecosystem management, according to the United Nations 2030 Agenda for Sustainable Development. Therefore, sustainable solutions are in high demand. One of these is the use of biopolymers derived from microbes and seaweed. This paper aims to provide an overview of the sources of extraction and use of microbial (bacteria and cyanobacteria) and seaweed-based biopolymers as soil conditioners, the characteristics of biopolymer-treated soils, and their environmental concerns. A preliminary search was also carried out on the entire Scopus database on biopolymers to find out how much attention has been paid to biopolymers as biofertilizers compared to other applications of these molecules until now. Several soil quality indicators were evaluated, including soil moisture, color, structure, porosity, bulk density, temperature, aggregate stability, nutrient availability, organic matter, and microbial activity. The mechanisms involved in improving soil quality were also discussed.
Collapse
Affiliation(s)
- Waqas Ali Akbar
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy.
| | - Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Italy
| | - Flora Angela Rutigliano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy
| |
Collapse
|
3
|
Deeb M, Smagin AV, Pauleit S, Fouché-Grobla O, Podwojewski P, Groffman PM. The urgency of building soils for Middle Eastern and North African countries: Economic, environmental, and health solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170529. [PMID: 38296094 DOI: 10.1016/j.scitotenv.2024.170529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Soil degradation is a short or long ongoing process that limits ecosystem services. Intensive land use, water scarcity, land disturbance, and global climate change have reduced the quality of soils worldwide. This degradation directly threatens most of the land in the Middle East and North Africa, while the remaining areas are at high risk of further desertification. Rehabilitation and control of these damaged environments are essential to avoid negative effects on human well-being (e.g., poverty, food insecurity, wars, etc.). Here we review constructed soils involving the use of waste materials as a solution to soil degradation and present approaches to address erosion, organic matter oxidation, water scarcity and salinization. Our analysis showed a high potential for using constructed soil as a complimentary reclamation solution in addition to traditional ones. Constructed soils could have the ability to overcome the limitations of existing solutions to tackle land degradation while contributing to the solution of waste management problems. These soils facilitate the provision of multiple ecosystem services and have the potential to address particularly challenging land degradation problems in semi and dry climates.
Collapse
Affiliation(s)
- Maha Deeb
- Soils and Substrates, HEPIA, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland; Lehrstuhl für Strategie und Management der Landschaftsentwicklung, Technische Universität München, Germany.
| | - Andrey Valentinovich Smagin
- Lomonosov Moscow State University (MSU), 119991 Moscow, Russia; Institute of Forest Science of RAS, Moscow Region, Sovetskaya 21, 143030 Uspenskoe, Russia
| | - Stephan Pauleit
- Lehrstuhl für Strategie und Management der Landschaftsentwicklung, Technische Universität München, Germany
| | - Olivier Fouché-Grobla
- IRD, UMR IEES-Paris, Sorbonne Université/IRD/CNRS/INRAe/UPEC/Université de Paris, Centre IRD de France Nord, 32, Av. H. Varagnat, 93143 Bondy Cedex, France; Geomatics & Land Law Lab, Conservatoire national des Arts et Métiers (CNAM), Paris, France
| | - Pascal Podwojewski
- IRD, UMR IEES-Paris, Sorbonne Université/IRD/CNRS/INRAe/UPEC/Université de Paris, Centre IRD de France Nord, 32, Av. H. Varagnat, 93143 Bondy Cedex, France
| | - Peter M Groffman
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
4
|
Smagin AV, Sadovnikova NB. Hygroscopy as an Indicator of Specific Surface Area in Polymer Materials. Polymers (Basel) 2024; 16:593. [PMID: 38475277 DOI: 10.3390/polym16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Specific surface area (SSA) is an integral characteristic of the interfacial surface in poly-disperse systems, widely used for the assessment of technological properties in polymer materials and composites. Hygroscopic water content (Wh) is an obligate indicator of dispersed materials prior to any analysis of their chemical composition. This study links both indicators for the purpose of the express assessment of SSA using widely available Wh data, on the example of natural (starch, cellulose) and synthetic (acrylic hydrogels) polymer materials. The standard BET analysis of SSA using water vapor desorption was chosen as a reference method. In contrast to the known empirical correlations, this study is based on the fundamental thermodynamic theory of the disjoining water pressure for the connection of the analyzed quantities. The statistical processing of the results for the new methodology and the standard BET method showed their good compliance in a wide range of SSA from 200 to 900 m2/g. The most important methodological conclusion is the possibility of an accurate physically based calculation of hydrophilic SSA in polymer materials using their Wh data at a known relative humidity in the laboratory.
Collapse
Affiliation(s)
- Andrey V Smagin
- Soil Science Department and Eurasian Center for Food Security, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, 143030 Uspenskoe, Moscow Region, Russia
| | - Nadezhda B Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
5
|
Smagin AV, Sadovnikova NB, Belyaeva EA, Korchagina CV. Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO 2 Emissions. Polymers (Basel) 2023; 15:3582. [PMID: 37688209 PMCID: PMC10489987 DOI: 10.3390/polym15173582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Quantification of the biodegradability of soil water superabsorbents is necessary for a reasonable prediction of their stability and functioning. A new methodological approach to assessing the biodegradability of these polymer materials has been implemented on the basis of PASCO (USA) instrumentation for continuous registration of kinetic CO2 emission curves in laboratory incubation experiments with various hydrogels, including the well-known trade brands Aquasorb, Zeba, and innovative Russian Aquapastus composites with an acrylic polymer matrix. Original kinetic models were proposed to describe different types of respiratory curves and calculate half-life indicators of the studied superabsorbents. Comparative analysis of the new approach with the assessment by biological oxygen demand revealed for the first time the significance of CO2 dissolution in the liquid phase of gel structures during their incubation. Experiments have shown a tenfold reduction in half-life up to 0.1-0.3 years for a priori non-biodegradable synthetic superabsorbents under the influence of compost extract. The incorporation of silver ions into Aquapastus innovative composites at a dose of 0.1% or 10 ppm in swollen gel structures effectively increases their stability, prolonging the half-life to 10 years and more, or almost twice the Western stability standard for polymer ameliorants.
Collapse
Affiliation(s)
- Andrey V. Smagin
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia;
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Nadezhda B. Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia;
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Elena A. Belyaeva
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Christina V. Korchagina
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| |
Collapse
|
6
|
Smagin AV, Sadovnikova NB, Belyaeva EA, Krivtsova VN, Shoba SA, Smagina MV. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers (Basel) 2022; 14:polym14235131. [PMID: 36501525 PMCID: PMC9739259 DOI: 10.3390/polym14235131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The article summarizes multivariate field trials of gel-forming soil conditioners for agriculture and urban landscaping in various climatic conditions from arid (O.A.E., Uzbekistan) to humid (Moscow region, Russia). The field test program included environmental monitoring of weather data, temperature, water-air regimes, salinity, alkalinity, and biological activity of various soils (sandy and loamy sandy Arenosols, Retisols, loamy Serozems), productivity and yield of plants (lawns, vegetables) and their quality, including pathogen infestation. The evolutionary line of polymer superabsorbents from radiation-crosslinked polyacrylamide (1995) to the patented "Aquapastus" material (2014-2020) with amphiphilic fillers and biocidal additives demonstrated not only success, but also the main problems of using hydrogels in soils (biodegradation, osmotic collapse, etc.), as well as their technological solutions. Along with innovative materials, our know-how consisted in the intelligent soil design of capillary barriers for water accumulation and antipathogenic and antielectrolyte protection of the rhizosphere. Gel-forming polymer conditioners and new technologies of their application increase the productivity of plant crops and the quality of biomass by 30-50%, with a 1.3-2-fold saving of water resources and reliable protection of the topsoil from pathogens and secondary salinization. The results can be useful to a wide range of specialists from chemical technologists to agronomists and landscapers.
Collapse
Affiliation(s)
- Andrey V. Smagin
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
- Correspondence: ; Tel.: +7-(495)-916-917-79-48
| | - Nadezhda B. Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Elena A. Belyaeva
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| | - Victoria N. Krivtsova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A. Shoba
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Marina V. Smagina
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| |
Collapse
|